29 research outputs found

    Macro-scale transport of the excitation energy along a metal nanotrack: exciton-plasmon energy transfer mechanism

    Get PDF
    Presently we report (i) excited state (exciton) propagation in a metal nanotrack over macroscopic distances, along with (ii) energy transfer from the nanotrack to adsorbed dye molecules. We measured the rates of both of these processes. We concluded that the effective speed of exciton propagation along the nanotrack is about 8 × 107 cm/s, much lower than the surface plasmon propagation speed of 1.4 × 1010 cm/s. We report that the transmitted energy yield depends on the nanotrack length, with the energy emitted from the surface much lower than the transmitted energy, i.e. the excited nanotrack mainly emits in its end zone. Our model thus assumes that the limiting step in the exciton propagation is the energy transfer between the originally prepared excitons and surface plasmons, with the rate constant of about 5.7 × 107 s-1. We also conclude that the energy transfer between the nanotrack and the adsorbed dye is limited by the excited-state lifetime in the nanotrack. Indeed, the measured characteristic buildup time of the dye emission is much longer than the characteristic energy transfer time to the dye of 81 ns, and thus must be determined by the excited state lifetime in the nanotrack. Indeed, the latter is very close to the characteristic buildup time of the dye emission. The data obtained are novel and very promising for a broad range of future applications.PR Institute of Functionalized Nanomaterials NASA EPSCoR grant (NASA Cooperative Agreement) NNX15AK43A National Centre for Research Resources NIH-NCRR-G12-RR03035 NIMHD-G12-MD007583info:eu-repo/semantics/publishedVersio

    Low-Cost Flexible Nano-Sulfide/Carbon Composite Counter Electrode for Quantum-Dot-Sensitized Solar Cell

    Get PDF
    Cu2S nanocrystal particles were in situ deposited on graphite paper to prepare nano-sulfide/carbon composite counter electrode for CdS/CdSe quantum-dot-sensitized solar cell (QDSC). By optimization of deposition time, photovoltaic conversion efficiency up to 3.08% was obtained. In the meantime, this composite counter electrode was superior to the commonly used Pt, Au and carbon counter electrodes. Electrochemical impedance spectra further confirmed that low charge transfer resistance at counter electrode/electrolyte interface was responsible for this, implied the potential application of this composite counter electrode in high-efficiency QDSC

    Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics

    Get PDF
    [EN] Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.We thank the following agencies for support of this research: Ministerio de Educacion y Ciencia under project HOPE CSD2007-00007, Generalitat Valenciana (ISIC/2012/008) and Universitat Jaume I project 12I361.01/1. EHS and KWK acknowledge the Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST) and the International Cooperation of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (2012T100100740).Mora-Sero, I.; Bertoluzzi, L.; González-Pedro, V.; Gimenez, S.; Fabregat-Santiago, F.; Kemp, KW.; Sargent, EH.... (2013). Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. Nature Communications. 4:3272-3272. https://doi.org/10.1038/ncomms3272S327232724Grätzel, M., Janssen, R. A. J., Mitzi, D. B. & Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 488, 304–312 (2012).Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).Barkhouse, D. A. R. et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011).Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nano 7, 577–582 (2012).Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011).Lan, X. et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013).Liu, H. et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832–3837 (2011).Jaegermann, W., Klein, A. & Mayer, T. Interface engineering of inorganic thin-film solar cells—materials-science challenges for advanced physical concepts. Adv. Mater. 21, 4196–4206 (2009).Sarasqueta, G., Choudhury, K. R., Subbiah, J. & So, F. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors. Adv. Funct. Mater. 21, 167–171 (2010).Brown, P. R. et al. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11, 2955–2961 (2011).Etgar, L. et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells. ACS Nano 6, 3092–3099 (2012).Gao, J. et al. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 11, 3263–3266 (2011).Leschkies, K. S., Beatty, T. J., Kang, M. S., Norris, D. J. & Aydil, E. S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano 3, 3638–3648 (2009).Gärtner, W. Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959).Tang, J. et al. Schottky quantum dot solar cells stable in air under solar illumination. Adv. Mater. 22, 1398–1402 (2011).Willis, S. M., Cheng, C., Assender, H. E. & Watt, A. A. R. The transitional heterojunction behavior of PbS/ZnO colloidal quantum dot solar cells. Nano Lett. 12, 1522–1526 (2012).Zhitomirsky, D. et al. N-Type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 6181–6185 (2012).Bisquert, J., Cahen, D., Rühle, S., Hodes, G. & Zaban, A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J. Phys. Chem. B 108, 8106–8118 (2004).Bisquert, J. & Garcia-Belmonte, G. On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J. Phys. Chem. Lett. 2, 1950–1964 (2011).Ratcliff, E. L., Zacher, B. & Armstrong, N. R. Selective interlayers and contacts in organic photovoltaic cells. J. Phys. Chem. Lett. 2, 1337–1350 (2011).Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).Hodes, G., Howell, I. D. J. & Peter, L. M. Nanocristallyne photoelectrochemical cells. A new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136–3140 (1992).Bisquert, J., Garcia-Belmonte, G. & Fabregat Santiago, F. Modeling the electric potential distribution in the dark in nanoporous semiconductor electrodes. J. Solid State Electr 3, 337–347 (1999).Yu, D., Wang, C. & Guyot-Sionnest, P. n-type conducting CdSe nanocrystal solids. Science 300, 1277–1280 (2003).Guyot-Sionnest, P. Charging colloidal quantum dots by electrochemistry. Microchim. Acta 160, 309–314 (2008).Vanmaekelbergh, D. Self-assembly of colloidal nanocrystals as route to novel classes of nanostructured materials. Nano Today 6, 419–437 (2011).Vanmaekelbergh, D. & Liljerorth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 34, 299–312 (2005).Roest, A. L., Kelly, J. J. & Vanmaekelbergh, D. Coulomb blockade of electron transport in a ZnO quantum-dot solid. Appl. Phys. Lett. 83, 5530–5532 (2003).Roest, A. L., Kelly, J. J., Vanmaekelbergh, D. & Meulenkamp, E. A. Staircase in the electron mobility of a ZnO quantum dot assembly due to shell filling. Phys. Rev. Lett. 89, 036801 (2002).Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).Hyun, B.-R. et al. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2, 2206–2212 (2008).Ning, Z. et al. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 24, 6295–6299 (2012).Gross, D. et al. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 132, 5981–5983 (2010).Abkowitz, M., Facci, J. S. & Rehm, J. Direct evaluation of contact injection efficiency into small molecule based transport layers: Influence of extrinsic factors. J. Appl. Phys. 83, 2670–2676 (1998).Meyer, J. & Kahn, A. Electronic structure of molybdenum-oxide films and associated charge injection mechanisms in organic devices. J. Photon. Energy 1, 011109 (2011).Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).Scholes, G. D., Jones, M. & Kumar, S. Energetics of photoinduced electron-transfer reactions decided by quantum confinement. J. Phys. Chem. C 111, 13777–13785 (2007).Bässler, H., Arkhipov, V. I., Emelianova, E. V. & Tak, Y. H. Charge injection into light-emitting diodes: theory and experiment. J. Appl. Phys. 84, 848–856 (1998).Baldo, M. A. & Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 085201 (2001).Scott, J. C. & Malliaras, G. G. Charge injection and recombination at the metal-organic interface. Chem. Phys. Lett. 299, 115 (1999).Shen, Y., Hosseini, A. R., Wong, M. H. & Malliaras, G. G. How to make ohmic contacts to organic semiconductors. Chem. Phys. Chem. 5, 16–25 (2004).Hung, L. S., Tang, C. W. & Mason, M. G. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl. Phys. Lett. 70, 152–154 (1997).Ding, H. & Gao, Y. Au/LiF/tris(8-hydroxyquinoline) aluminum interfaces. Appl. Phys. Lett. 91, 172107 (2007).Rodriguez, J. A., Jirsak, T., Chaturvedi, S. & Dvorak, J. Chemistry of SO2 and NO2 on ZnO(0001)-Zn and ZnO powders: changes in reactivity with surface structure and composition. J. Mol. Catal. A Chem. 167, 47–57 (2001)

    Wired for efficiency

    No full text
    corecore