37 research outputs found

    The Łojasiewicz exponent over a field of arbitrary characteristic

    Get PDF
    Let K be an algebraically closed field and let K((XQ)) denote the field of generalized series with coefficients in K. We propose definitions of the local Łojasiewicz exponent of F = ( f1, . . . , fm) ∈ K[[X, Y ]]m as well as of the Łojasiewicz exponent at infinity of F = ( f1, . . . , fm) ∈ K[X, Y ]m, which generalize the familiar case of K = C and F ∈ C{X, Y }m (resp. F ∈ C[X, Y ]m), see Cha˛dzy´nski and Krasi´nski (In: Singularities, 1988; In: Singularities, 1988; Ann Polon Math 67(3):297–301, 1997; Ann Polon Math 67(2):191–197, 1997), and prove some basic properties of such numbers. Namely, we show that in both cases the exponent is attained on a parametrization of a component of F (Theorems 6 and 7), thus being a rational number. To this end, we define the notion of the Łojasiewicz pseudoexponent of F ∈ (K((XQ))[Y ])m for which we give a description of all the generalized series that extract the pseudoexponent, in terms of their jets. In particular, we show that there exist only finitely many jets of generalized series giving the pseudoexponent of F (Theorem 5). The main tool in the proofs is the algebraic version of Newton’s Polygon Method. The results are illustrated with some explicit examples

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests

    A quotient of the Lubin-Tate tower II

    Get PDF
    In this article we construct the quotient M_1/P(K) of the infinite-level Lubin-Tate space M_1 by the parabolic subgroup P(K) of GL(n,K) of block form (n-1,1) as a perfectoid space, generalizing results of one of the authors (JL) to arbitrary n and K/Q_p finite. For this we prove some perfectoidness results for certain Harris-Taylor Shimura varieties at infinite level. As an application of the quotient construction we show a vanishing theorem for Scholze's candidate for the mod p Jacquet-Langlands and the mod p local Langlands correspondence. An appendix by David Hansen gives a local proof of perfectoidness of M_1/P(K) when n = 2, and shows that M_1/Q(K) is not perfectoid for maximal parabolics Q not conjugate to P.Comment: with an appendix by David Hanse

    Local and global structure of connections on nonarchimedean curves

    No full text
    Consider a vector bundle with connection on a p-adic analytic curve in the sense of Berkovich. We collect some improvements and refinements of recent results on the structure of such connections, and on the convergence of local horizontal sections. This builds on work from the author's 2010 book and on subsequent improvements by Baldassarri and by Poineau and Pulita. One key result exclusive to this paper is that the convergence polygon of a connection is locally constant around every type 4 point

    Erratum to: New methods for (\upvarphi , \Gamma ) ( φ , Γ ) -modules

    No full text

    New methods for (φ,Γ)(\varphi, \Gamma) ( φ , Γ ) -modules

    No full text
    We provide new proofs of two key results of p-adic Hodge theory: the Fontaine-Wintenberger isomorphism between Galois groups in characteristic 0 and characteristic p, and the Cherbonnier-Colmez theorem on decompletion of (phi, Gamma)-modules. These proofs are derived from joint work with Liu on relative p-adic Hodge theory, and are closely related to Scholze's study of perfectoid algebras and spaces

    Appendix and erratum to "Massey products for elliptic curves of rank 1"

    No full text
    corecore