42 research outputs found

    Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting

    Get PDF
    The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence

    Similar dispersal patterns between two closely related birds with contrasting migration strategies

    Full text link
    Studying dispersal is crucial to understand metapopulation and sink-source dynamics and invasion processes. The capability to disperse is especially important for species living in fragmented habitats like wetlands. We investigated the distribution of natal and breeding dispersal distances and philopatry in Spanish populations of two closely related reedbed-nesting birds, the Moustached Warbler Acrocephalus melanopogon and the Eurasian Reed Warbler Acrocephalus scirpaceus. These warblers are morphologically very similar, but differ in migration strategy and, in our study area, in population size. Our aims were to find the best model for dispersal distances and to assess the occurrence of intra- or interspecific differences in dispersal patterns. We used ringing data from the Spanish marking scheme and selected recaptures to avoid including migrating individuals. In both species, most individuals were philopatric but dispersing birds were able to cross large distances (up to more than 100 km), suggesting the capability to compensate for habitat fragmentation. We found the heavy-tailed Cauchy distribution to be the best conceptual description for our data, in all cases but natal dispersal of Moustached Warblers. Among Eurasian Reed Warblers, natal philopatry was lower than breeding philopatry. We found no significant interspecific differences. This does not confirm the hypothesis of higher dispersal ability in long distance migrants (like Eurasian Reed Warblers) than in resident/short distance migrant bird species (like Moustached Warblers). The similarity in dispersal patterns among the two warblers may be explained by their close phylogenetic relatedness, similar constraints imposed on both species by a patchy habitat or similar evolutionary pressures.We are grateful to the many ringers who collected the data during years of fieldwork in Spain. Francesco Ceresa is supported by an "Atraent talent'' grant from the University of Valencia.Ceresa, F.; Belda, E.; Monrós González, JS. (2016). Similar dispersal patterns between two closely related birds with contrasting migration strategies. Population Ecology. 58(3):421-427. doi:10.1007/s10144-016-0547-0S421427583Banco de datos de anillamiento del remite ICONA – Ministerio de Medio Ambiente (2015) Datos de anillamiento y recuperaciones en España. Ministerio de Agricultura, Alimentación y Medio Ambiente, SEO/BirdLife, ICO, EBD-CSIC y GOB. Madrid (in Spanish)Begon M, Townsend CR, Harper JL (2006) Ecology: from individual to ecosystems, 4th edn. Blackwell Publishing, OxfordBlomqvist D, Fessl B, Hoi H, Kleindorfer S (2005) High frequency of extra-pair fertilisation in the moustached warbler, a songbird with a variable breeding system. Behaviour 142:1133–1148Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer Verlag, New YorkCantos FJ, Tellería JL (1994) Stopover site fidelity of four migrant warblers in the Iberian Peninsula. J Avian Biol 25:131–134Carrascal LM, Palomino D (2008) Las aves comunes reproductoras en España. Población en 2004–2006. SEO/BirdLife, Madrid (in Spanish with English abstract)Carrascal LM, Weykam S, Palomino D, Lobo JM, Díaz L (2005) Atlas Virtual de las Aves Terrestres de España. http://www.vertebradosibericos.org/atlasaves.html . Accessed 16 Feb 2016Castany J (2003) El carricerín real (Acrocephalus melanopogon) en el P. N. del Prat de Cabanes-Torreblanca. Doctoral thesis. University of Valencia, Valencia (in Spanish)Castany J, López G (2006) El carricerín real en España. I Censo Nacional (2005). SEO/BirdLife, Madrid (in Spanish with English abstract)Ceresa F, Belda EJ, Kvist L, Rguibi-Idrissi H, Monrós JS (2015) Does fragmentation of wetlands affect gene flow in sympatric Acrocephalus warblers with different migration strategies? J Avian Biol 46:577–588Cooper NW, Murphy MT, Redmond LJ, Dolan AC (2009) Density-dependent age at first reproduction in the eastern kingbird. Oikos 118:413–419Delignette-Muller ML, Dutang C (2015) fitdistrplus: An R Package for fitting distributions. J Stat Softw 64:1–34. http://www.jstatsoft.org/v64/i04/ . Accessed 2 Sep 2015Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeHengeveld R (1994) Small step invasion research. Trends Ecol Evol 9:339–342Hodges MF Jr, Krementz DG (1996) Neotropical migratory breeding bird communities in riparian forests of different widths along the Altamaha River, Georgia. Wilson Bulletin 108:496–506Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291Kennerley P, Pearson D (2010) Reed and bush warblers. Christopher Helm Publishers Ltd., LondonKoenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517Kralj J, Procházka P, Fainová D, Patzenhauerová H, Tutiš V (2010) Intraspecific variation in the wing shape and genetic differentiation of reed warblers Acrocephalus scirpaceus in Croatia. Acta Ornithologica 45:51–58Lambrechts MM, Blondel J, Caizergues A, Dias PC, Pradol R, Thomas DW (1999) Will estimates of lifetime recruitment of breeding offspring on small-scale study plots help us to quantify processes underlying adaptation? Oikos 86:147–151Machtans CS, Villard MA, Hannon SJ (1996) Use of riparian buffer strips as movement corridors by forest birds. Conserv Biol 10:1366–1379Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273Newton I (1992) Experiments on the limitation of bird numbers by territorial behaviour. Biol Rev 67:129–173Norberg UM (1990) Vertebrate flight, mechanics, physiology, morphology, ecology and evolution. Springer Verlag, BerlinParacuellos M, Tellería JL (2004) Factors affecting the distribution of a waterbird community: the role of habitat configuration and bird abundance. Waterbirds 27:446–453Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536Paradis E, Baillie SR, Sutherland WJ (2002) Modeling large-scale dispersal distances. Ecol Model 151:279–292Peirò IG (2003) Intraspecific variation in the wing shape of the long-distance migrant Reed Warbler Acrocephalus scirpaceus: effects of age and distance of migration. Ardeola 50:31–37Plissner JH, Gowaty PA (1996) Patterns of natal dispersal, turnover, and dispersal costs in eastern bluebirds. Anim Behav 51:1307–1322Procházka P, Stokke BG, Jensen H, Fainová D, Bellinvia E, Fossøy F, Vikan JR, Bryja J, Soler M (2011) Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. J Avian Biol 42:103–113R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, ViennaRobinson WD (1999) Long-term changes in the avifauna of Barro Colorado Island, Panama, a tropical forest isolate. Conserv Biol 13:85–97SEO/BirdLife (2016a) Acrocephalus melanopogon. Anillamientos por década. http://www.anillamientoseo.org/ . Accessed 19 Feb 2016 (in Spanish)SEO/BirdLife (2016b) Acrocephalus scirpaceus. Anillamientos por década. http://www.anillamientoseo.org/ . Accessed 19 Feb 2016 (in Spanish)Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146:229–251Silva JP, Phillips L, Jones W, Eldridge J, O’Hara E (2007) Life and Europe’s wetlands, restoring a vital ecosystem. Office for Official Publications of the European Communities, LuxembourgSutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conservation ecology 4:16. http://www.consecol.org/vol4/iss1/art16 . Accessed 23 Oct 2015Vadász C, Német Á, Karcza Z, Loránt M, Biró C, Csörgő T (2008) Study on breeding site fidelity of Acrocephalus Warblers in Central Hungary. Acta Zool Acad Sci H 54(Suppl. 1):167–175Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO Jr, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229Van Houtan KS, Bass OL Jr, Lockwood J, Pimm SL (2010) Importance of estimating dispersal for endangered bird management. Conservation Letters 3:260–266Van Vessem J, Hecker N, Tucker GM (1997) Inland wetlands. In: Tucker GM, Evans MI (eds) Habitats for birds in Europe: A conservation strategy for the wider environment. BirdLife Conservation Series 6. BirdLife International, Cambridge, pp 125–158Waser PM, Creel SR, Lucas JR (1994) Death and disappearance: estimating mortality risk associated with philopatry and dispersal. Behav Ecol 5:135–141Willis EO (1974) Populations and local extinctions of birds on Barro Colorado Island, Panama. Ecol Monogr 44:153–169Winkler DW, Wrege PH, Allen PE, Kast TL, Senesac P, Wasson MF, Llambías PE, Ferretti V, Sullivan PJ (2004) Breeding dispersal and philopatry in the tree swallow. Condor 106:768–776Winkler DW, Wrege PH, Allen PE, Kast TL, Senesac P, Wasson MF, Sullivan PJ (2005) The natal dispersal of tree swallows in a continuous mainland environment. J Anim Ecol 74:1080–109

    Jellyfish Support High Energy Intake of Leatherback Sea Turtles (Dermochelys coriacea): Video Evidence from Animal-Borne Cameras

    Get PDF
    The endangered leatherback turtle is a large, highly migratory marine predator that inexplicably relies upon a diet of low-energy gelatinous zooplankton. The location of these prey may be predictable at large oceanographic scales, given that leatherback turtles perform long distance migrations (1000s of km) from nesting beaches to high latitude foraging grounds. However, little is known about the profitability of this migration and foraging strategy. We used GPS location data and video from animal-borne cameras to examine how prey characteristics (i.e., prey size, prey type, prey encounter rate) correlate with the daytime foraging behavior of leatherbacks (n = 19) in shelf waters off Cape Breton Island, NS, Canada, during August and September. Video was recorded continuously, averaged 1:53 h per turtle (range 0:08–3:38 h), and documented a total of 601 prey captures. Lion's mane jellyfish (Cyanea capillata) was the dominant prey (83–100%), but moon jellyfish (Aurelia aurita) were also consumed. Turtles approached and attacked most jellyfish within the camera's field of view and appeared to consume prey completely. There was no significant relationship between encounter rate and dive duration (p = 0.74, linear mixed-effects models). Handling time increased with prey size regardless of prey species (p = 0.0001). Estimates of energy intake averaged 66,018 kJ•d−1 but were as high as 167,797 kJ•d−1 corresponding to turtles consuming an average of 330 kg wet mass•d−1 (up to 840 kg•d−1) or approximately 261 (up to 664) jellyfish•d-1. Assuming our turtles averaged 455 kg body mass, they consumed an average of 73% of their body mass•d−1 equating to an average energy intake of 3–7 times their daily metabolic requirements, depending on estimates used. This study provides evidence that feeding tactics used by leatherbacks in Atlantic Canadian waters are highly profitable and our results are consistent with estimates of mass gain prior to southward migration

    How Landscape Heterogeneity Frames Optimal Diffusivity in Searching Processes

    Get PDF
    Theoretical and empirical investigations of search strategies typically have failed to distinguish the distinct roles played by density versus patchiness of resources. It is well known that motility and diffusivity of organisms often increase in environments with low density of resources, but thus far there has been little progress in understanding the specific role of landscape heterogeneity and disorder on random, non-oriented motility. Here we address the general question of how the landscape heterogeneity affects the efficiency of encounter interactions under global constant density of scarce resources. We unveil the key mechanism coupling the landscape structure with optimal search diffusivity. In particular, our main result leads to an empirically testable prediction: enhanced diffusivity (including superdiffusive searches), with shift in the diffusion exponent, favors the success of target encounters in heterogeneous landscapes

    The Role of Turtles as Coral Reef Macroherbivores

    Get PDF
    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood

    Global Conservation Priorities for Marine Turtles

    Get PDF
    Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs), and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts) we developed a “conservation priorities portfolio” system using categories of paired risk and threats scores for all RMUs (n = 58). We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority-setting for widespread, long-lived taxa

    Are we working towards global research priorities for management and conservation of sea turtles?

    Get PDF
    This is the final version. Available from Inter Research via the DOI in this recordThere is another ORE record for this publication: http://hdl.handle.net/10871/24817In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring that may lead to innovations or inform subsequent interpretation of effectiveness of conservation interventions and/or severity of threats. Progress to answering the 20 questions was not uniform and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is obviously not the only, and possibly not the best, metric for understanding research progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium, with additional members, were assigned in groups of two or three (based on core expertise) to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservation.K.R.W-S is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-125252

    Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    Get PDF
    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict

    Emerging research and priorities for elasmobranch conservation.

    Get PDF
    Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation
    corecore