622 research outputs found

    Plasma von Willebrand factor levels predict in-hospital survival in patients with acute-on-chronic liver failure

    Get PDF
    BACKGROUND AND AIMS: Circulating levels of von Willebrand factor (vWF) predict mortality in patients with cirrhosis. We hypothesized that systemic inflammation in acute-on-chronic liver failure (ACLF) will stimulate endothelium, increase vWF levels, and promote platelet microthrombi causing organ failure. METHODS: In this prospective study, we correlated plasma vWF levels with organ failure, liver disease severity, sepsis, and systemic inflammatory response syndrome (SIRS) and also analyzed if vWF levels predicted in-hospital composite poor outcome (i.e. death/discharged in terminal condition/liver transplantation) in consecutive ACLF patients. RESULTS: Twenty-one of the 50 ACLF patients studied had composite poor outcome. ACLF patients had markedly elevated vWF antigen and activity (sevenfold and fivefold median increase, respectively) on days 1 and 3. Median ratio of vWF to a disintegrin and metalloprotease with thrombospondin type 1 motif, member 13 (ADAMTS13) activity on day 1 was significantly higher in ACLF patients (11.2) compared to 20 compensated cirrhosis patients (3.3) and healthy volunteers (0.9). On day 1, area under ROC curve (AUROC) to predict composite poor outcome of hospital stay for ACLF patients for vWF antigen, vWF activity, and model for end-stage liver disease (MELD) score were 0.63, 0.68, and 0.74, respectively. vWF activity correlated better with liver disease severity (MELD score, ACLF grade) and organ failure (Sequential Organ Failure Assessment [SOFA] score) than vWF antigen; in contrast, neither vWF antigen nor activity correlated with platelet count, sepsis, or SIRS. CONCLUSIONS: vWF levels are markedly elevated, correlate with organ failure, and predict in-hospital survival in ACLF patients. This data provides a mechanistic basis for postulating that vWF-reducing treatments such as plasma exchange may benefit ACLF patients

    Fast Scramblers, Horizons and Expander Graphs

    Full text link
    We propose that local quantum systems defined on expander graphs provide a simple microscopic model for thermalization on quantum horizons. Such systems are automatically fast scramblers and are motivated from the membrane paradigm by a conformal transformation to the so-called optical metric.Comment: 22 pages, 2 figures. Added further discussion in section 3. Added reference

    Genetic background modifies vulnerability to glaucoma related phenotypes in Lmx1b mutant mice

    Get PDF
    Variants in the LIM homeobox transcription factor 1-beta (LMX1B) gene predispose individuals to elevated intraocular pressure (IOP), a key risk factor for glaucoma. However, the effect of LMX1Bmutations varies widely between individuals. To better understand the mechanisms underlying LMX1B-related phenotypes and individual differences, we backcrossed the Lmx1bV265D (also known as Lmx1bIcst ) allele onto the C57BL/6J (B6), 129/Sj (129), C3A/BLiA-Pde6b+ /J (C3H) and DBA/2J-Gpnmb+ (D2-G) mouse strain backgrounds. Strain background had a significant effect on the onset and severity of ocular phenotypes in Lmx1bV265D/+ mutant mice. Mice of the B6 background were the most susceptible to developing abnormal IOP distribution, severe anterior segment developmental anomalies (including malformed eccentric pupils, iridocorneal strands and corneal abnormalities) and glaucomatous nerve damage. By contrast, Lmx1bV265D mice of the 129 background were the most resistant to developing anterior segment abnormalities, had less severe IOP elevation than B6 mutants at young ages and showed no detectable nerve damage. To identify genetic modifiers of susceptibility to Lmx1bV265D -induced glaucoma-associated phenotypes, we performed a mapping cross between mice of the B6 (susceptible) and 129 (resistant) backgrounds. We identified a modifier locus on Chromosome 18, with the 129 allele(s) substantially lessening severity of ocular phenotypes, as confirmed by congenic analysis. By demonstrating a clear effect of genetic background in modulating Lmx1b-induced phenotypes, providing a panel of strains with different phenotypic severities and identifying a modifier locus, this study lays a foundation for better understanding the roles of LMX1B in glaucoma with the goal of developing new treatments

    String Theory on Warped AdS_3 and Virasoro Resonances

    Get PDF
    We investigate aspects of holographic duals to time-like warped AdS_3 space-times--which include G\"odel's universe--in string theory. Using worldsheet techniques similar to those that have been applied to AdS_3 backgrounds, we are able to identify space-time symmetry algebras that act on the dual boundary theory. In particular, we always find at least one Virasoro algebra with computable central charge. Interestingly, there exists a dense set of points in the moduli space of these models in which there is actually a second commuting Virasoro algebra, typically with different central charge than the first. We analyze the supersymmetry of the backgrounds, finding related enhancements, and comment on possible interpretations of these results. We also perform an asymptotic symmetry analysis at the level of supergravity, providing additional support for the worldsheet analysis.Comment: 24 pages + appendice

    Transport in holographic superfluids

    Full text link
    We construct a slowly varying space-time dependent holographic superfluid and compute its transport coefficients. Our solution is presented as a series expansion in inverse powers of the charge of the order parameter. We find that the shear viscosity associated with the motion of the condensate vanishes. The diffusion coefficient of the superfluid is continuous across the phase transition while its third bulk viscosity is found to diverge at the critical temperature. As was previously shown, the ratio of the shear viscosity of the normal component to the entropy density is 1/(4 pi). As a consequence of our analysis we obtain an analytic expression for the backreacted metric near the phase transition for a particular type of holographic superfluid.Comment: 45 pages + appendice

    A systematic review of population health interventions and Scheduled Tribes in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite India's recent economic growth, health and human development indicators of Scheduled Tribes (ST) or <it>Adivasi </it>(India's indigenous populations) lag behind national averages. The aim of this review was to identify the public health interventions or components of these interventions that are effective in reducing morbidity or mortality rates and reducing risks of ill health among ST populations in India, in order to inform policy and to identify important research gaps.</p> <p>Methods</p> <p>We systematically searched and assessed peer-reviewed literature on evaluations or intervention studies of a population health intervention undertaken with an ST population or in a tribal area, with a population health outcome(s), and involving primary data collection.</p> <p>Results</p> <p>The evidence compiled in this review revealed three issues that promote effective public health interventions with STs: (1) to develop and implement interventions that are low-cost, give rapid results and can be easily administered, (2): a multi-pronged approach, and (3): involve ST populations in the intervention.</p> <p>Conclusion</p> <p>While there is a growing body of knowledge on the health needs of STs, there is a paucity of data on how we can address these needs. We provide suggestions on how to undertake future population health intervention research with ST populations and offer priority research avenues that will help to address our knowledge gap in this area.</p

    Sparticle Spectrum of Large Volume Compactification

    Full text link
    We examine the large volume compactification of Type IIB string theory or its F theory limit and the associated supersymmetry breakdown and soft terms. It is crucial to incorporate the loop-induced moduli mixing, originating from radiative corrections to the Kahler potential. We show that in the presence of moduli mixing, soft scalar masses generically receive a D-term contribution of the order of the gravitino mass m_{3/2} when the visible sector cycle is stabilized by the D-term potential of an anomalous U(1) gauge symmetry, while the moduli-mediated gaugino masses and A-parameters tend to be of the order of m_{3/2}/8pi^2. It is noticed also that a too large moduli mixing can destabilize the large volume solution by making it a saddle point.Comment: 29 page

    Dark Radiation and Dark Matter in Large Volume Compactifications

    Full text link
    We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced by the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE

    Holographic c-theorems in arbitrary dimensions

    Full text link
    We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flows is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.Comment: 62 pages, 4 figures, few typo's correcte
    corecore