We construct a slowly varying space-time dependent holographic superfluid and
compute its transport coefficients. Our solution is presented as a series
expansion in inverse powers of the charge of the order parameter. We find that
the shear viscosity associated with the motion of the condensate vanishes. The
diffusion coefficient of the superfluid is continuous across the phase
transition while its third bulk viscosity is found to diverge at the critical
temperature. As was previously shown, the ratio of the shear viscosity of the
normal component to the entropy density is 1/(4 pi). As a consequence of our
analysis we obtain an analytic expression for the backreacted metric near the
phase transition for a particular type of holographic superfluid.Comment: 45 pages + appendice