121 research outputs found

    Idiosyncratic deals for older workers: increased heterogeneity among older workers enhance the need for i-Deals

    Get PDF
    The rapid aging of the workforce throughout the Western world and parts of Asia, including Japan and China, poses many challenges on contemporary organizations (European Commission, 2010 ; Wang & Shultz, 2010 ). The Babyboom generation, consisting of workers born between 1945 and 1965, constitutes a large part of the current workforce. Due to decreased fertility rates, there are fewer younger workers entering the labor market, as a consequence of which the percentage of older workers is rapidly increasing (Truxillo & Fraccaroli, 2013 ). Consequently, organizations are increasingly aware that the employee population is changing, and that strategies to employ, motivate, and retain workers have to be adapted accordingly. It is no longer suffi cient for organizations to focus on employing younger workers (e.g., through designing traineeships for graduates), because the infl ux of younger workers in the labor market is stagnating, which is in particular present in certain sectors, such as technical occupations and health care (Polat, Bal, & Jansen, 2012 ). Hence, organizations increasingly will have to rely on older workers, and try to retain older workers, and motivate them to stay longer in the workforce. Similarly, governments across Europe are also increasing offi cial retirement ages, and making it fi nancially less attractive for older workers to retire early (European Commission)

    Small Cationic DDA:TDB Liposomes as Protein Vaccine Adjuvants Obviate the Need for TLR Agonists in Inducing Cellular and Humoral Responses

    Get PDF
    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes - including size, antigen association and addition of TLR agonists – to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes

    Tumor Cell Phenotype Is Sustained by Selective MAPK Oxidation in Mitochondria

    Get PDF
    Mitochondria are major cellular sources of hydrogen peroxide (H2O2), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H2O2 concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H2O2 due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H2O2 yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 µM H2O2 increased cell proliferation in ERK1/2-dependent manner whereas high 50 µM H2O2 arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H2O2 level. Like this, high H2O2 or directed mutation of redox-sensitive ERK2 Cys214 impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H2O2 yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype

    Can medical therapy mimic the clinical efficacy or physiological effects of bariatric surgery?

    Get PDF
    The number of bariatric surgical procedures performed has increased dramatically. This review discusses the clinical and physiological changes, and in particular, the mechanisms behind weight loss and glycaemic improvements, observed following the gastric bypass, sleeve gastrectomy and gastric banding bariatric procedures. The review then examines how close we are to mimicking the clinical or physiological effects of surgery through less invasive and safer modern interventions that are currently available for clinical use. These include dietary interventions, orlistat, lorcaserin, phentermine/topiramate, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, pramlintide, dapagliflozin, the duodenal–jejunal bypass liner, gastric pacemakers and gastric balloons. We conclude that, based on the most recent trials, we cannot fully mimic the clinical or physiological effects of surgery; however, we are getting closer. A ‘medical bypass' may not be as far in the future as we previously thought, as the physician's armamentarium against obesity and type 2 diabetes has recently got stronger through the use of specific dietary modifications, novel medical devices and pharmacotherapy. Novel therapeutic targets include not only appetite but also taste/food preferences, energy expenditure, gut microbiota, bile acid signalling, inflammation, preservation of β-cell function and hepatic glucose output, among others. Although there are no magic bullets, an integrated multimodal approach may yield success. Non-surgical interventions that mimic the metabolic benefits of bariatric surgery, with a reduced morbidity and mortality burden, remain tenable alternatives for patients and health-care professionals

    Microneedles: A New Frontier in Nanomedicine Delivery

    Get PDF
    This review aims to concisely chart the development of two individual research fields, namely nanomedicines, with specific emphasis on nanoparticles (NP) and microparticles (MP), and microneedle (MN) technologies, which have, in the recent past, been exploited in combinatorial approaches for the efficient delivery of a variety of medicinal agents across the skin. This is an emerging and exciting area of pharmaceutical sciences research within the remit of transdermal drug delivery and as such will undoubtedly continue to grow with the emergence of new formulation and fabrication methodologies for particles and MN. Firstly, the fundamental aspects of skin architecture and structure are outlined, with particular reference to their influence on NP and MP penetration. Following on from this, a variety of different particles are described, as are the diverse range of MN modalities currently under development. The review concludes by highlighting some of the novel delivery systems which have been described in the literature exploiting these two approaches and directs the reader towards emerging uses for nanomedicines in combination with MN

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different

    The management and outcome for patients with chronic subdural hematoma: A prospective, multicenter, observational cohort study in the United Kingdom

    Get PDF
    OBJECTIVESymptomatic chronic subdural hematoma (CSDH) will become an increasingly common presentation in neurosurgical practice as the population ages, but quality evidence is still lacking to guide the optimal management for these patients. The British Neurosurgical Trainee Research Collaborative (BNTRC) was established by neurosurgical trainees in 2012 to improve research by combining the efforts of trainees in each of the United Kingdom (UK) and Ireland's neurosurgical units (NSUs). The authors present the first study by the BNTRC that describes current management and outcomes for patients with CSDH throughout the UK and Ireland. This provides a resource both for current clinical practice and future clinical research on CSDH.METHODSData on management and outcomes for patients with CSDH referred to UK and Ireland NSUs were collected prospectively over an 8-month period and audited against criteria predefined from the literature: NSU mortality < 5%, NSU morbidity < 10%, symptomatic recurrence within 60 days requiring repeat surgery < 20%, and unfavorable functional status (modified Rankin Scale score of 4–6) at NSU discharge < 30%.RESULTSData from 1205 patients in 26 NSUs were collected. Bur-hole craniostomy was the most common procedure (89%), and symptomatic recurrence requiring repeat surgery within 60 days was observed in 9% of patients. Criteria on mortality (2%), rate of recurrence (9%), and unfavorable functional outcome (22%) were met, but morbidity was greater than expected (14%). Multivariate analysis demonstrated that failure to insert a drain intraoperatively independently predicted recurrence and unfavorable functional outcome (p = 0.011 and p = 0.048, respectively). Increasing patient age (p < 0.00001), postoperative bed rest (p = 0.019), and use of a single bur hole (p = 0.020) independently predicted unfavorable functional outcomes, but prescription of high-flow oxygen or preoperative use of antiplatelet medications did not.CONCLUSIONSThis is the largest prospective CSDH study and helps establish national standards. It has confirmed in a real-world setting the effectiveness of placing a subdural drain. This study identified a number of modifiable prognostic factors but questions the necessity of some common aspects of CSDH management, such as enforced postoperative bed rest. Future studies should seek to establish how practitioners can optimize perioperative care of patients with CSDH to reduce morbidity as well as minimize CSDH recurrence. The BNTRC is unique worldwide, conducting multicenter trainee-led research and audits. This study demonstrates that collaborative research networks are powerful tools to interrogate clinical research questions.Society of British Neurological Surgeons. PJH supported by NIHR Research Professorship and NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. It is permanently embargoed to comply with the publisher’s copyright terms. The final version is available via https://doi.org/10.3171/2016.8.JNS1613

    Outcomes following surgery in subgroups of comatose and very elderly patients with chronic subdural hematoma

    Get PDF
    Increasing age and lower pre-operative Glasgow coma score (GCS) are associated with worse outcome after surgery for chronic subdural haematoma (CSDH). Only few studies have quantified outcomes specific to the very elderly or comatose patients. We aim to examine surgical outcomes in these patient groups. We analysed data from a prospective multicentre cohort study, assessing the risk of recurrence, death, and unfavourable functional outcome of very elderly (≥ 90 years) patients and comatose (pre-operative GCS ≤ 8) patients following surgical treatment of CSDH. Seven hundred eighty-five patients were included in the study. Thirty-two (4.1%) patients had pre-operative GCS ≤ 8 and 70 (8.9%) patients were aged ≥ 90 years. A higher proportion of comatose patients had an unfavourable functional outcome (38.7 vs 21.7%; p = 0.03), although similar proportion of comatose (64.5%) and non-comatose patients (61.8%) functionally improved after surgery (p = 0.96). Compared to patients aged < 90 years, a higher proportion of patients aged ≥ 90 years had unfavourable functional outcome (41.2 vs 20.5%; p < 0.01), although approximately half had functional improvement following surgery. Mortality risk was higher in both comatose (6.3 vs 1.9%; p = 0.05) and very elderly (8.8 vs 1.1%; p < 0.01) groups. There was a trend towards a higher recurrence risk in the comatose group (19.4 vs 9.5%; p = 0.07). Surgery can still provide considerable benefit to very elderly and comatose patients despite their higher risk of morbidity and mortality. Further research would be needed to better identify those most likely to benefit from surgery in these groups
    corecore