164 research outputs found
Environmental Factors Controlling the Distribution of Symbiodinium Harboured by the Coral Acropora millepora on the Great Barrier Reef
Background: The Symbiodinium community associated with scleractinian corals is widely considered to be shaped by seawater temperature, as the coral's upper temperature tolerance is largely contingent on the Symbiodinium types harboured. Few studies have challenged this paradigm as knowledge of other environmental drivers on the distribution of Symbiodinium is limited. Here, we examine the influence of a range of environmental variables on the distribution of Symbiodinium associated with Acropora millepora collected from 47 coral reefs spanning 1,400 km on the Great Barrier Reef (GBR), Australia
Variation in Symbiodinium ITS2 Sequence Assemblages among Coral Colonies
Endosymbiotic dinoflagellates in the genus Symbiodinium are
fundamentally important to the biology of scleractinian corals, as well as to a
variety of other marine organisms. The genus Symbiodinium is
genetically and functionally diverse and the taxonomic nature of the union
between Symbiodinium and corals is implicated as a key trait
determining the environmental tolerance of the symbiosis. Surprisingly, the
question of how Symbiodinium diversity partitions within a
species across spatial scales of meters to kilometers has received little
attention, but is important to understanding the intrinsic biological scope of a
given coral population and adaptations to the local environment. Here we address
this gap by describing the Symbiodinium ITS2 sequence
assemblages recovered from colonies of the reef building coral Montipora
capitata sampled across KÄne'ohe Bay, Hawai'i. A
total of 52 corals were sampled in a nested design of Coral Colony(Site(Region))
reflecting spatial scales of meters to kilometers. A diversity of
Symbiodinium ITS2 sequences was recovered with the majority
of variance partitioning at the level of the Coral Colony. To confirm this
result, the Symbiodinium ITS2 sequence diversity in six
M. capitata colonies were analyzed in much greater depth
with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition
recovered from these colonies varied significantly, indicating that each coral
hosted a different assemblage of Symbiodinium. The diversity of
Symbiodinium ITS2 sequence assemblages retrieved from
individual colonies of M. capitata here highlights the problems
inherent in interpreting multi-copy and intra-genomically variable molecular
markers, and serves as a context for discussing the utility and biological
relevance of assigning species names based on Symbiodinium ITS2
genotyping
From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata
Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring
Children's active play: self-reported motivators, barriers and facilitators
Physical activity has important benefits for children's physical health and mental wellbeing, but many children do not meet recommended levels. Research suggests that active play has the potential to make a valuable contribution to children's overall physical activity, whilst providing additional cognitive, social and emotional benefits. However, relatively little is known about the determinants of UK children's active play. Understanding these factors provides the critical first step in developing interventions to increase children's active play, and therefore overall physical activity.
Eleven focus groups were conducted with 77, 10-11 year old children from four primary schools in Bristol, UK. Focus groups examined: (i) factors which motivate children to take part in active play; (ii) factors which limit children's active play and (iii) factors which facilitate children's active play. All focus groups were audio-taped and transcribed verbatim. Data were analysed using a thematic approach.
Children were motivated to engage in active play because they perceived it to be enjoyable, to prevent boredom, to have physical and mental health benefits and to provide freedom from adult control, rules and structure. However, children's active play was constrained by a number of factors, including rainy weather and fear of groups of teenagers in their play spaces. Some features of the physical environment facilitated children's active play, including the presence of green spaces and cul-de-sacs in the neighbourhood. Additionally, children's use of mobile phones when playing away from home was reported to help to alleviate parents' safety fears, and therefore assist children's active play.
Children express a range of motivational and environmental factors that constrain and facilitate their active play. Consideration of these factors should improve effectiveness of interventions designed to increase active play
Recommended from our members
Gut microbiota functions: metabolism of nutrients and other food components
The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays
Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela â Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa
Shedding Light on the Galaxy Luminosity Function
From as early as the 1930s, astronomers have tried to quantify the
statistical nature of the evolution and large-scale structure of galaxies by
studying their luminosity distribution as a function of redshift - known as the
galaxy luminosity function (LF). Accurately constructing the LF remains a
popular and yet tricky pursuit in modern observational cosmology where the
presence of observational selection effects due to e.g. detection thresholds in
apparent magnitude, colour, surface brightness or some combination thereof can
render any given galaxy survey incomplete and thus introduce bias into the LF.
Over the last seventy years there have been numerous sophisticated
statistical approaches devised to tackle these issues; all have advantages --
but not one is perfect. This review takes a broad historical look at the key
statistical tools that have been developed over this period, discussing their
relative merits and highlighting any significant extensions and modifications.
In addition, the more generalised methods that have emerged within the last few
years are examined. These methods propose a more rigorous statistical framework
within which to determine the LF compared to some of the more traditional
methods. I also look at how photometric redshift estimations are being
incorporated into the LF methodology as well as considering the construction of
bivariate LFs. Finally, I review the ongoing development of completeness
estimators which test some of the fundamental assumptions going into LF
estimators and can be powerful probes of any residual systematic effects
inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy &
Astrophysics Review. This version: bring in line with A&AR format
requirements, also minor typo corrections made, additional citations and
higher rez images adde
- âŠ