26 research outputs found

    Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet

    Get PDF
    Earthquake hazard assessments and rupture forecasts are based on the potential length of seismic rupture and whether or not slip is arrested at fault segment boundaries. Such forecasts do not generally consider that one earthquake can trigger a second large event, near-instantaneously, at distances greater than a few kilometers. Here we present a geodetic and seismological analysis of a magnitude 7.1 intra-continental earthquake that occurred in Pakistan in 1997. We find that the earthquake, rather than a single event as hitherto assumed, was in fact an earthquake doublet: initial rupture on a shallow, blind 2 reverse fault was followed just 19 seconds later by a second rupture on a separate reverse fault 50 km away. Slip on the second fault increased the total seismic moment by half, and doubled both the combined event duration and the area of maximum ground shaking. We infer that static Coulomb stresses at the initiation location of the second earthquake were probably reduced as a result of the first. Instead, we suggest that a dynamic triggering mechanism is likely, although the responsible seismic wave phase is unclear. Our results expose a flaw in earthquake rupture forecasts that disregard cascading, multiple-fault ruptures of this type

    Reply to 'Artificial seismic acceleration'

    No full text

    Spatial organization of foreshocks as a tool to forecast large earthquakes

    Get PDF
    An increase in the number of smaller magnitude events, retrospectively named foreshocks, is often observed before large earthquakes. We show that the linear density probability of earthquakes occurring before and after small or intermediate mainshocks displays a symmetrical behavior, indicating that the size of the area fractured during the mainshock is encoded in the foreshock spatial organization. This observation can be used to discriminate spatial clustering due to foreshocks from the one induced by aftershocks and is implemented in an alarm-based model to forecast m > 6 earthquakes. A retrospective study of the last 19 years Southern California catalog shows that the daily occurrence probability presents isolated peaks closely located in time and space to the epicenters of five of the six m > 6 earthquakes. We find daily probabilities as high as 25% (in cells of size 0.04 × 0.04deg(2)), with significant probability gains with respect to standard models

    Triggered earthquakes suppressed by an evolving stress shadow from a propagating dyke

    Get PDF
    Large earthquakes can generate small changes in static stress: increases that trigger aftershock swarms, or reductions that create a region of reduced seismicity—a stress shadow1, 2. However, seismic waves from large earthquakes also cause transient dynamic stresses that may trigger seismicity3, 4. This makes it difficult to separate the relative influence of static and dynamic stress changes on aftershocks. Dyke intrusions do not generate dynamic stresses, so provide an unambiguous test of the stress shadow hypothesis. Here we use GPS and seismic data to reconstruct the intrusion of an igneous dyke that is 46 km long and 5 m wide beneath Bárðarbunga Volcano, central Iceland, in August 2014. We find that during dyke emplacement, bursts of seismicity at a distance of 5 to 15 km were first triggered and then abruptly switched off as the dyke tip propagated away from the volcano. We calculate the evolving static stress changes during dyke propagation and show that the stressing rate controls both the triggering and then suppression of earthquake rates in three separate areas adjacent to the dyke. Our results imply that static stress changes help control earthquake clustering. Similar small static stress changes may be important for triggering seismicity near geothermal areas, regions being hydrofractured and deflating oil and gas fields
    corecore