192 research outputs found

    Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects

    Get PDF
    A six-channel wavelength-division-multiplexed optical transceiver with a compact footprint of 1.5 x 0.65 mm(2) for off-chip and on-chip interconnects is demonstrated on a single silicon-on-insulator chip. An arrayed waveguide grating is used as the (de)multiplexer, and III-V electroabsorption sections fabricated by hybrid integration technology are used as both modulators and detectors, which also enable duplex links. The 30-Gb/s capacity for each of the six wavelength channels for the off-chip transceiver is demonstrated. For the on-chip interconnect, an electrical-to-electrical 3-dB bandwidth of 13 GHz and a data rate of 30 Gb/s per wavelength are achieved

    Deep Over-sampling Framework for Classifying Imbalanced Data

    Full text link
    Class imbalance is a challenging issue in practical classification problems for deep learning models as well as traditional models. Traditionally successful countermeasures such as synthetic over-sampling have had limited success with complex, structured data handled by deep learning models. In this paper, we propose Deep Over-sampling (DOS), a framework for extending the synthetic over-sampling method to exploit the deep feature space acquired by a convolutional neural network (CNN). Its key feature is an explicit, supervised representation learning, for which the training data presents each raw input sample with a synthetic embedding target in the deep feature space, which is sampled from the linear subspace of in-class neighbors. We implement an iterative process of training the CNN and updating the targets, which induces smaller in-class variance among the embeddings, to increase the discriminative power of the deep representation. We present an empirical study using public benchmarks, which shows that the DOS framework not only counteracts class imbalance better than the existing method, but also improves the performance of the CNN in the standard, balanced settings

    Filter-based stochastic algorithm for global optimization

    Get PDF
    We propose the general Filter-based Stochastic Algorithm (FbSA) for the global optimization of nonconvex and nonsmooth constrained problems. Under certain conditions on the probability distributions that generate the sample points, almost sure convergence is proved. In order to optimize problems with computationally expensive black-box objective functions, we develop the FbSA-RBF algorithm based on the general FbSA and assisted by Radial Basis Function (RBF) surrogate models to approximate the objective function. At each iteration, the resulting algorithm constructs/updates a surrogate model of the objective function and generates trial points using a dynamic coordinate search strategy similar to the one used in the Dynamically Dimensioned Search method. To identify a promising best trial point, a non-dominance concept based on the values of the surrogate model and the constraint violation at the trial points is used. Theoretical results concerning the sufficient conditions for the almost surely convergence of the algorithm are presented. Preliminary numerical experiments show that the FbSA-RBF is competitive when compared with other known methods in the literature.The authors are grateful to the anonymous referees for their fruitful comments and suggestions.The first and second authors were partially supported by Brazilian Funds through CAPES andCNPq by Grants PDSE 99999.009400/2014-01 and 309303/2017-6. The research of the thirdand fourth authors were partially financed by Portuguese Funds through FCT (Fundação para Ciência e Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM and UIDB/00319/2020

    Interplay between Kinase Domain Autophosphorylation and F-Actin Binding Domain in Regulating Imatinib Sensitivity and Nuclear Import of BCR-ABL

    Get PDF
    BACKGROUND: The constitutively activated BCR-ABL tyrosine kinase of chronic myeloid leukemia (CML) is localized exclusively to the cytoplasm despite the three nuclear localization signals (NLS) in the ABL portion of this fusion protein. The NLS function of BCR-ABL is re-activated by a kinase inhibitor, imatinib, and in a kinase-defective BCR-ABL mutant. The mechanism of this kinase-dependent inhibition of the NLS function is not understood. METHODOLOGY/PRINCIPAL FINDINGS: By examining the subcellular localization of mutant BCR-ABL proteins under conditions of imatinib and/or leptomycin B treatment to inhibit nuclear export, we have found that mutations of three specific tyrosines (Y232, Y253, Y257, according to ABL-1a numbering) in the kinase domain can inhibit the NLS function of kinase-proficient and kinase-defective BCR-ABL. Interestingly, binding of imatinib to the kinase-defective tyrosine-mutant restored the NLS function, suggesting that the kinase domain conformation induced by imatinib-binding is critical to the re-activation of the NLS function. The C-terminal region of ABL contains an F-actin binding domain (FABD). We examined the subcellular localization of several FABD-mutants and found that this domain is also required for the activated kinase to inhibit the NLS function; however, the binding to F-actin per se is not important. Furthermore, we found that some of the C-terminal deletions reduced the kinase sensitivity to imatinib. CONCLUSIONS/SIGNIFICANCE: Results from this study suggest that an autophosphorylation-dependent kinase conformation together with the C-terminal region including the FABD imposes a blockade of the BCR-ABL NLS function. Conversely, conformation of the C-terminal region including the FABD can influence the binding affinity of imatinib for the kinase domain. Elucidating the structural interactions among the kinase domain, the NLS region and the FABD may therefore provide insights on the design of next generation BCR-ABL inhibitors for the treatment of CML

    Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids

    Get PDF
    The thermal conductivity of boron nitride/ethylene glycol (BN/EG) nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm) which is higher than that synthesized with small BN nanoparticles (70 nm). The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively

    Artesunate induces necrotic cell death in schwannoma cells

    Get PDF
    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely dependent on necroptosis. ART appears to inhibit autophagy, which may also contribute to the cell death. Our data in human schwannoma cells show that ART can be combined with the autophagy inhibitor chloroquine (CQ) to potentiate the cell death. Thus, this study suggests that artemisinin-based drugs may be used in certain tumours where cells are necroptosis competent, and the drugs may act in synergy with apoptosis inducers or autophagy inhibitors to enhance their anti-tumour activity
    • …
    corecore