17 research outputs found

    Fermion scattering off electroweak phase transition kink walls with hypermagnetic fields

    Full text link
    We study the scattering of fermions off a finite width kink wall during the electroweak phase transition in the presence of a background hypermagnetic field. We derive and solve the Dirac equation for such fermions and compute the reflection and transmission coefficients for the case when the fermions move from the symmetric to the broken symmetry phase. We show that the chiral nature of the fermion coupling with the background field in the symmetric phase generates an axial asymmetry in the scattering processes. We discuss possible implications of such axial charge segregation for baryon number generation.Comment: 9 pages, 3 Postscript figures, uses RevTeX4. Expanded discussion, published versio

    Axially asymmetric fermion scattering off electroweak phase transition bubble walls with hypermagnetic fields

    Get PDF
    We show that in the presence of large scale primordial hypermagnetic fields, it is possible to generate an axial asymmetry for a first order electroweak phase transition. This happens during the reflection and transmission of fermions off the true vacuum bubbles, due to the chiral nature of the fermion coupling with the background field in the symmetric phase. We derive and solve the Dirac equation for such fermions and compute the reflection and transmission coefficients for the case when these fermions move from the symmetric to the symmetry broken phase. We also comment on the possible implications of such axial charge segregation processes for baryon number generation.Comment: 8 pages, 2 Encapsulated Postscript figures, uses ReVTeX and epsfig.sty, expanded discussion, version to appear in Phys. Rev.

    Petrochemical structure of Early Vendian basalt series in the South-Western part of the East-European platform

    No full text
    Early Vendian volcanic volynskaya series in the South-Western part of the East-European platform contains two types of rock's paragenesa which differ by petrochemical trends. One of these types corresponds to tholeitic, other - to kimberlitic trends. Guestions of possible connections of Cu and Au mineralization with different paragenesa boundaries are discussed
    corecore