210 research outputs found
Mathematical Analysis and Simulations of the Neural Circuit for Locomotion in Lamprey
We analyze the dynamics of the neural circuit of the lamprey central pattern
generator (CPG). This analysis provides insights into how neural interactions
form oscillators and enable spontaneous oscillations in a network of damped
oscillators, which were not apparent in previous simulations or abstract phase
oscillator models. We also show how the different behaviour regimes
(characterized by phase and amplitude relationships between oscillators) of
forward/backward swimming, and turning, can be controlled using the neural
connection strengths and external inputs.Comment: 4 pages, accepted for publication in Physical Review Letter
Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling
This paper investigates the dependence of synchronization transitions of
bursting oscillations on the information transmission delay over scale-free
neuronal networks with attractive and repulsive coupling. It is shown that for
both types of coupling, the delay always plays a subtle role in either
promoting or impairing synchronization. In particular, depending on the
inherent oscillation period of individual neurons, regions of irregular and
regular propagating excitatory fronts appear intermittently as the delay
increases. These delay-induced synchronization transitions are manifested as
well-expressed minima in the measure for spatiotemporal synchrony. For
attractive coupling, the minima appear at every integer multiple of the average
oscillation period, while for the repulsive coupling, they appear at every odd
multiple of the half of the average oscillation period. The obtained results
are robust to the variations of the dynamics of individual neurons, the system
size, and the neuronal firing type. Hence, they can be used to characterize
attractively or repulsively coupled scale-free neuronal networks with delays.Comment: 15 pages, 9 figures; accepted for publication in PLoS ONE [related
work available at http://arxiv.org/abs/0907.4961 and
http://www.matjazperc.com/
The role of ongoing dendritic oscillations in single-neuron dynamics
The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as temporally local, near-instantaneous mappings from the current input of the cell to its current output, brought about by somatic summation of dendritic contributions that are generated in spatially localized functional compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations, and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought
Minimal Size of Cell Assemblies Coordinated by Gamma Oscillations
In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25–100 Hz) oscillations. When the number of driven cells is too small, however, the synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft) lower bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior of pyramidal cells and fast-spiking interneurons in these experiments.Collaborative Research in Computational NeuroscienceNational Institutes of Health (U.S.) (grant 1R01 NS067199)National Institutes of Health (U.S.) (grant DMS 0717670)National Institutes of Health (U.S.) (grant 1R01 DA029639)National Institutes of Health (U.S.) (grant 1RC1 MH088182)National Institutes of Health (U.S.) (grant DP2OD002002)Paul G. Allen Family FoundationnGoogle (Firm
Shaping bursting by electrical coupling and noise
Gap-junctional coupling is an important way of communication between neurons
and other excitable cells. Strong electrical coupling synchronizes activity
across cell ensembles. Surprisingly, in the presence of noise synchronous
oscillations generated by an electrically coupled network may differ
qualitatively from the oscillations produced by uncoupled individual cells
forming the network. A prominent example of such behavior is the synchronized
bursting in islets of Langerhans formed by pancreatic \beta-cells, which in
isolation are known to exhibit irregular spiking. At the heart of this
intriguing phenomenon lies denoising, a remarkable ability of electrical
coupling to diminish the effects of noise acting on individual cells.
In this paper, we derive quantitative estimates characterizing denoising in
electrically coupled networks of conductance-based models of square wave
bursting cells. Our analysis reveals the interplay of the intrinsic properties
of the individual cells and network topology and their respective contributions
to this important effect. In particular, we show that networks on graphs with
large algebraic connectivity or small total effective resistance are better
equipped for implementing denoising. As a by-product of the analysis of
denoising, we analytically estimate the rate with which trajectories converge
to the synchronization subspace and the stability of the latter to random
perturbations. These estimates reveal the role of the network topology in
synchronization. The analysis is complemented by numerical simulations of
electrically coupled conductance-based networks. Taken together, these results
explain the mechanisms underlying synchronization and denoising in an important
class of biological models
Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons
We study associative memory neural networks of the Hodgkin-Huxley type of
spiking neurons in which multiple periodic spatio-temporal patterns of spike
timing are memorized as limit-cycle-type attractors. In encoding the
spatio-temporal patterns, we assume the spike-timing-dependent synaptic
plasticity with the asymmetric time window. Analysis for periodic solution of
retrieval state reveals that if the area of the negative part of the time
window is equivalent to the positive part, then crosstalk among encoded
patterns vanishes. Phase transition due to the loss of the stability of
periodic solution is observed when we assume fast alpha-function for direct
interaction among neurons. In order to evaluate the critical point of this
phase transition, we employ Floquet theory in which the stability problem of
the infinite number of spiking neurons interacting with alpha-function is
reduced into the eigenvalue problem with the finite size of matrix. Numerical
integration of the single-body dynamics yields the explicit value of the
matrix, which enables us to determine the critical point of the phase
transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
Desynchronization, Mode Locking, and Bursting in Strongly Coupled Integrate-and-Fire Oscillators
This article was published in the journal, Physical Review Letters [© American Physical Society]. It is also available at: http://link.aps.org/abstract/PRL/v81/p2168.We show how a synchronized pair of integrate-and-fire neural oscillators with noninstantaneous synaptic interactions can destabilize in the strong coupling regime resulting in non-phase-locked behavior. In the case of symmetric inhibitory coupling, desynchronization produces an inhomogeneous state in which one of the oscillators becomes inactive (oscillator death). On the other hand, for asymmetric excitatory/inhibitory coupling, mode locking can occur leading to periodic bursting patterns. The consequences for large globally coupled networks is discussed
Gap Junctions and Epileptic Seizures – Two Sides of the Same Coin?
Electrical synapses (gap junctions) play a pivotal role in the synchronization of
neuronal ensembles which also makes them likely agonists of pathological brain
activity. Although large body of experimental data and theoretical
considerations indicate that coupling neurons by electrical synapses promotes
synchronous activity (and thus is potentially epileptogenic), some recent
evidence questions the hypothesis of gap junctions being among purely
epileptogenic factors. In particular, an expression of inter-neuronal gap
junctions is often found to be higher after the experimentally induced seizures
than before. Here we used a computational modeling approach to address the role
of neuronal gap junctions in shaping the stability of a network to perturbations
that are often associated with the onset of epileptic seizures. We show that
under some circumstances, the addition of gap junctions can increase the
dynamical stability of a network and thus suppress the collective electrical
activity associated with seizures. This implies that the experimentally observed
post-seizure additions of gap junctions could serve to prevent further
escalations, suggesting furthermore that they are a consequence of an adaptive
response of the neuronal network to the pathological activity. However, if the
seizures are strong and persistent, our model predicts the existence of a
critical tipping point after which additional gap junctions no longer suppress
but strongly facilitate the escalation of epileptic seizures. Our results thus
reveal a complex role of electrical coupling in relation to epileptiform events.
Which dynamic scenario (seizure suppression or seizure escalation) is ultimately
adopted by the network depends critically on the strength and duration of
seizures, in turn emphasizing the importance of temporal and causal aspects when
linking gap junctions with epilepsy
Traveling Waves in a Chain of Pulse-Coupled Oscillators
This article was published in the journal, Physical Review Letters [© American Physical Society]. It is also available at: http://link.aps.org/abstract/PRL/v80/p4815.We derive conditions for the existence of traveling wave solutions in a chain of pulse-coupled integrate-and-fire oscillators with nearest-neighbor interactions and distributed delays. A linear stability analysis of the traveling waves is carried out in terms of perturbations of the firing times of the oscillators. It is shown how traveling waves destabilize when the detuning between oscillators or the strength of the coupling becomes too large
- …