8,628 research outputs found

    A new approach to axial coupling constants in the QCD sum rule

    Full text link
    We derive new QCD sum rules for the axial coupling constants by considering two-point correlation functions of the axial-vector currents in a one nucleon state. The QCD sum rules tell us that the axial coupling constants are expressed by nucleon matrix elements of quark and gluon operators which are related to the sigma terms and the moments of parton distribution functions. The results for the iso-vector axial coupling constants and the 8th component of the SU(3) octet are in good agreement with experiment.Comment: 10 pages, 1 figure include

    Quantum Conductance in Silver Nanowires: correlation between atomic structure and transport properties

    Full text link
    We have analyzed the atomic arrangements and quantum conductance of silver nanowires generated by mechanical elongation. The surface properties of Ag induce unexpected structural properties, as for example, predominance of high aspect ratio rod-like wires. The structural behavior was used to understand the Ag quantum conductance data and the proposed correlation was confirmed by means of theoretical calculations. These results emphasize that the conductance of metal point contacts is determined by the preferred atomic structures and, that atomistic descriptions are essential to interpret the quantum transport behavior of metal nanostructures.Comment: 4 pages, 4 figure

    K3-fibered Calabi-Yau threefolds I, the twist map

    Full text link
    A construction of Calabi-Yaus as quotients of products of lower-dimensional spaces in the context of weighted hypersurfaces is discussed, including desingularisation. The construction leads to Calabi-Yaus which have a fiber structure, in particular one case has K3 surfaces as fibers. These Calabi-Yaus are of some interest in connection with Type II -heterotic string dualities in dimension 4. A section at the end of the paper summarises this for the non-expert mathematician.Comment: 31 pages LaTeX, 11pt, 2 figures. To appear in International Journal of Mathematics. On the web at http://personal-homepages.mis.mpg.de/bhunt/preprints.html , #

    Dynamical Generation of Fermion Mass and Magnetic Field in Three-Dimensional QED with Chern-Simons Term

    Full text link
    We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of NN flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS term κ\kappa equals Ne2/4πN e^2/4 \pi. The resultant vacuum becomes the finite-density state half-filled by fermions. For κ=Ne2/2π\kappa=N e^2/2 \pi, we find the fermion remains massless and only the magnetic field is induced. For κ=0\kappa=0, spontaneous magnetization does not occur and should be regarded as an external field.Comment: 8 pages, no figure, to be published in Phys. Rev. Let

    On ghost condensation, mass generation and Abelian dominance in the Maximal Abelian Gauge

    Get PDF
    Recent work claimed that the off-diagonal gluons (and ghosts) in pure Yang-Mills theories, with Maximal Abelian gauge fixing (MAG), attain a dynamical mass through an off-diagonal ghost condensate. This condensation takes place due to a quartic ghost interaction, unavoidably present in MAG for renormalizability purposes. The off-diagonal mass can be seen as evidence for Abelian dominance. We discuss why ghost condensation of the type discussed in those works cannot be the reason for the off-diagonal mass and Abelian dominance, since it results in a tachyonic mass. We also point out what the full mechanism behind the generation of a real mass might look like.Comment: 7 pages; uses revtex

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.

    Weyl group, CP and the kink-like field configurations in the effective SU(3) gauge theory

    Full text link
    Effective Lagrangian for pure Yang-Mills gauge fields invariant under the standard space-time and local gauge SU(3) transformations is considered. It is demonstrated that a set of twelve degenerated minima exists as soon as a nonzero gluon condensate is postulated. The minima are connected to each other by the parity transformations and Weyl group transformations associated with the color su(3) algebra. The presence of degenerated discrete minima in the effective potential leads to the solutions of the effective Euclidean equations of motion in the form of the kink-like gauge field configurations interpolating between different minima. Spectrum of charged scalar field in the kink background is discussed.Comment: 10 pages, 1 figure, added references for sections 1 and

    Saddle-point van Hove singularity and the phase diagram of high-Tc cuprates

    Full text link
    We examine the generic phase behavior of high-Tc cuprate superconductors in terms a universal van Hove singularity in the strongly overdoped region. Using a rigid ARPES-derived dispersion we solve the BCS gap equation and show that the pairing interaction or pairing energy cutoff must be a rapidly declining function of doping. This result is prejudicial to a phonon-based pairing interaction and more consistent with a magnetic or magnetically enhanced interaction.Comment: 5 pages, 2 figures, submitted to Physical Review

    Kondo Effect in a Quantum Antidot

    Full text link
    We report Kondo-like behaviour in a quantum antidot (a submicron depleted region in a two-dimensional electron gas) in the quantum-Hall regime. When both spin branches of the lowest Landau level encircle the antidot in a magnetic field (1\sim 1 T), extra resonances occur between extended edge states via antidot bound states when tunnelling is Coulomb blockaded. These resonances appear only in alternating Coulomb-blockaded regions, and become suppressed when the temperature or source-drain bias is raised. Although the exact mechanism is unknown, we believe that Kondo-like correlated tunnelling arises from skyrmion-type edge reconstruction. This observation demonstrates the generality of the Kondo phenomenon.Comment: 9 pages, 3 figures (Fig.3 in colour), to appear in Phys. Rev. Let

    Zero Temperature Chiral Phase Transition in (2+1)-Dimensional QED with a Chern-Simons Term

    Get PDF
    We investigate the zero temperature chiral phase transition in (2+1)-dimensional QED in the presence of a Chern-Simons term, changing the number of fermion flavors. In the symmetric phase, there are no light degrees of freedom even at the critical point. Unlike the case without a Chern-Simons term, the phase transition is first-order.Comment: 7 pages, RevTeX, no figure
    corecore