641 research outputs found

    Dichlorido(3,5-dimethyl-1H-pyrazole)[(3,5-dimethyl-1H-pyrazol-1-yl)(o-tol­yl)methanone]palladium(II)

    Get PDF
    In the title compound, [PdCl2(C5H8N2)(C12H12N2O)], the Pd atom adopts a slightly distorted trans-PdCl2N2 square-planar arrangement. The different Pd—N bond lengths can be related to the the electron-withdrawing effect of the o-toluoyl group on the substituted pyrazole ligand. The complex crystallizes as centrosymmetric hydrogen-bonded dimers through N—H⋯Cl linkages

    Left ventricle remodelling by double-patch sandwich technique

    Get PDF
    BACKGROUND: The sandwich double-patch technique was adopted as an alternative method for reconstruction of the left ventricle after excision of postinfarction dysfunctional myocardium to solve technical problems due to the thick edges of the ventricular wall. METHODS: Over a 5-year period, 12 of 21 patients with postinfarction antero-apical left ventricular aneurysm had thick wall edges after wall excision. It was due to akinetic muscular thick tissue in 6 cases, while in the other 6 with classic fibrous aneurysm, thick edges remained after the cut of the border zone. The ventricular opening was sandwiched between two patches and this is a technique which is currently used for the treatment of the interventricular septum rupture. In our patients the patches are much smaller than the removed aneurysm and they were sutured simply by a single row of single stitches. However, in contrast to interventricular septum rupture where the patches loosen the tension of the tissues, in our patients the patches pull strongly and restrain the walls by fastening their edges and supporting tight stitches. In this way they could narrow the cavity and close the ventricle. RESULTS: The resected area varied from 5 × 4 to 8 × 8 cm. Excision was extended into the interventricular septum in 5 patients, thus opening the right ventricle. CABG was performed on all patients but two. Left ventricular volumes and the ejection fraction changed significantly: end-systolic volume 93.5 ± 12.4 to 57.8 ± 8.9 ml, p < 0.001; end-diastolic volume 157.2 ± 16.7 to 115.3 ± 14.9 ml, p < 0.001; ejection fraction 40.3 ± 4.2 to 49.5 ± 5.7%, p < 0.001. All patients did well. One patient suffered from bleeding, which was not from the wall suture, and another had a left arm paresis. The post-operative hospital stay was 5 to 30 days with a mean 10.5 ± 7.5 days/patient. At follow-up, 9 to 60 months mean 34, all patients were symptom-free. NYHA class 2.5 ± 0.8 changed to 1.2 ± 0.4, p < 0.001. CONCLUSION: The double-patch sandwich technique (bi-patch closure) offers some advantages and does not result in increased morbidity and mortality. In the case of excising a left ventricular aneurysm, this technique in no way requires eversion of the edges, felt strips, buttressed and multiple sutures, all of which are needed for longitudinal linear closure. Moreover, it does not require purse string sutures, endocardial scar remnant to secure the patch or folding the excluded non-functional tissue, all of which are needed for endoventricular patch repair

    Systolic ventricular filling

    Get PDF
    The evidence of the ventricular myocardial band (VMB) has revealed unavoidable coherence and mutual coupling of form and function in the ventricular myocardium, making it possible to understand the principles governing electrical, mechanical and energetical events within the human heart. From the earliest Erasistratus' observations, principal mechanisms responsible for the ventricular filling have still remained obscured. Contemporary experimental and clinical investigations unequivocally support the attitude that only powerful suction force, developed by the normal ventricles, would be able to produce an efficient filling of the ventricular cavities. The true origin and the precise time frame for generating such force are still controversial. Elastic recoil and muscular contraction were the most commonly mentioned, but yet, still not clearly explained mechanisms involved in the ventricular suction. Classical concepts about timing of successive mechanical events during the cardiac cycle, also do not offer understandable insight into the mechanism of the ventricular filling. The net result is the current state of insufficient knowledge of systolic and particularly diastolic function of normal and diseased heart. Here we summarize experimental evidence and theoretical backgrounds, which could be useful in understanding the phenomenon of the ventricular filling. Anatomy of the VMB, and recent proofs for its segmental electrical and mechanical activation, undoubtedly indicates that ventricular filling is the consequence of an active muscular contraction. Contraction of the ascendent segment of the VMB, with simultaneous shortening and rectifying of its fibers, produces the paradoxical increase of the ventricular volume and lengthening of its long axis. Specific spatial arrangement of the ascendent segment fibers, their interaction with adjacent descendent segment fibers, elastic elements and intra-cavitary blood volume (hemoskeleton), explain the physical principles involved in this action. This contraction occurs during the last part of classical systole and the first part of diastole. Therefore, the most important part of ventricular diastole (i.e. the rapid filling phase), in which it receives &gt;70% of the stroke volume, belongs to the active muscular contraction of the ascendent segment. We hope that these facts will give rise to new understanding of the principal mechanisms involved in normal and abnormal diastolic heart function

    Observation and electric current control of a local spin in a single-molecule magnet

    Get PDF
    In molecular spintronics, the spin state of a molecule may be switched on and off by changing the molecular structure. Here, we switch on and off the molecular spin of a double-decker bis(phthalocyaninato)terbium(III) complex (TbPc2) adsorbed on an Au(111) surface by applying an electric current via a scanning tunnelling microscope. The dI/dV curve of the tunnelling current recorded onto a TbPc2 molecule shows a Kondo peak, the origin of which is an unpaired spin of a π-orbital of a phthalocyaninato (Pc) ligand. By applying controlled current pulses, we could rotate the upper Pc ligand in TbPc2, leading to the disappearance and reappearance of the Kondo resonance. The rotation shifts the molecular frontier-orbital energies, quenching the π-electron spin. Reversible switching between two stable ligand orientations by applying a current pulse should make it possible to code information at the single-molecule level

    Experiences with surgical treatment of ventricle septal defect as a post infarction complication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complications of acute myocardial infarction (AMI) with mechanical defects are associated with poor prognosis. Surgical intervention is indicated for a majority of these patients. The goal of surgical intervention is to improve the systolic cardiac function and to achieve a hemodynamic stability. In this present study we reviewed the outcome of patients with post infarction ventricular septal defect (PVSD) who underwent cardiac surgery.</p> <p>Methods</p> <p>We analysed retrospectively the hospital records of 41 patients, whose ages range from 48 to 81, and underwent a surgical treatment between 1990 and 2005 because of PVSD.</p> <p>Results</p> <p>In 22 patients concomitant coronary artery bypass grafting (CAGB) was performed. In 15 patients a residual shunt was found, this required re-op in seven of them. The time interval from infarct to rupture was 8.7 days and from rupture to surgery was 23.1 days. Hospital mortality in PVSD group was 32%. The mortality of urgent repair within 3 days of intractable cardiogenic shock was 100%. The mortality of patients with an anterior VSD and a posterior VSD was 29.6% vs 42.8%, respectively. All patients who underwent the surgical repair later than day 36 survived.</p> <p>Conclusion</p> <p>Surgical intervention is indicated for a majority of patients with mechanical complications. Cardiogenic shock remains the most important factor that affects the early results. The surgical repair of PVSD should be performed 4–5 weeks after AMI. To improve surgical outcome and hemodynamics the choice of surgical technique and surgical timing as well as preoperative management should be tailored for each patient individually.</p

    The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis

    Get PDF
    Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral transition in dependence of miR156 and, accordingly, transgenics constitutively over-expressing this microRNA are delayed in flowering. To elaborate their roles in Arabidopsis shoot development, we analysed two of the 11 miR156 regulated Arabidopsis SBP-box genes, i.e. the likely paralogous genes SPL9 and SPL15. Single and double mutant phenotype analysis showed these genes to act redundantly in controlling the juvenile-to-adult phase transition. In addition, their loss-of-function results in a shortened plastochron during vegetative growth, altered inflorescence architecture and enhanced branching. In these aspects, the double mutant partly phenocopies constitutive MIR156b over-expressing transgenic plants and thus a major contribution to the phenotype of these transgenics as a result of the repression of SPL9 and SPL15 is strongly suggested
    corecore