18 research outputs found

    Sequence-similar, structure-dissimilar protein pairs in the PDB

    Get PDF
    It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which “redundant” structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm)

    TIPIT: A randomised controlled trial of thyroxine in preterm infants under 28 weeks' gestation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born at extreme prematurity (below 28 weeks' gestation) are at high risk of developmental disability. A major risk factor for disability is having a low level of thyroid hormone which is recognised to be a frequent phenomenon in these infants. At present it is unclear whether low levels of thyroid hormone are a cause of disability, or a consequence of concurrent adversity.</p> <p>Methods</p> <p>We propose an explanatory multi-centre double blind randomised controlled trial of thyroid hormone supplementation in babies born below 28 weeks' gestation. All infants will receive either levothyroxine or placebo until 32 weeks' corrected gestational age. The primary outcome will be brain growth. This will be assessed by the width of the sub-arachnoid space measured using cranial ultrasound and head circumference at 36 weeks' corrected gestational. The secondary outcomes will be (a) thyroid hormone concentrations measured at increasing postnatal age, (b) status of the hypothalamic pituitary axis, (c) auxological data between birth and 36 weeks' corrected gestational age, (d) thyroid gland volume, (e) volumes of brain structures (measured by magnetic resonance imaging), (f) determination of the extent of myelination and white matter integrity (measured by diffusion weighted MRI) and brain vessel morphology (measured by magnetic resonance angiography) at expected date of delivery and (g) markers of morbidity including duration of mechanical ventilation and chronic lung disease.</p> <p>We will also examine how activity of the hypothalamic-pituitary-adrenal axis modulates the effects of thyroid supplementation. This will contribute to decisions about which confounding variables to assess in large-scale studies.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN89493983</p

    The Effect of Leverage, Company Size and Bond Age on Bond Ratings in the Financial Sector on the Indonesia Stock Exchange (IDX)

    No full text
    This study aims to examine the effect of Leverage, Company Size and Bond Age on Bond Ratings in financial sector companies on the Indonesia Stock Exchange (IDX). Based on the research results previously described, the following conclusions can be drawn: (1) Leverage has no significant effect on bond ratings. Based on these results, it shows that the first hypothesis is rejected. (2) Company size has a significant effect on bond ratings. Based on these results, it shows that the second hypothesis is accepted. (3) Bond Age has a significant effect on bond ratings. Based on these results, it shows that the third hypothesis is accepted

    Deletion of the proline-rich region of TonB disrupts formation of a 2:1 complex with FhuA, an outer membrane receptor of Escherichia coli

    No full text
    TonB protein of Escherichia coli couples the electrochemical potential of the cytoplasmic membrane (CM) to active transport of iron-siderophores and vitamin B12 across the outer membrane (OM). TonB interacts with OM receptors and transduces conformationally stored energy. Energy for transport is provided by the proton motive force through ExbB and ExbD, which form a ternary complex with TonB in the CM. TonB contains three distinct domains: an N-terminal signal/anchor sequence, a C-terminal domain, and a proline-rich region. The proline-rich region was proposed to extend TonB’s structure across the periplasm, allowing it to contact spatially distant OM receptors. Having previously identified a 2:1 stoichiometry for the complex of full-length (FL) TonB and the OM receptor FhuA, we now demonstrate that deletion of the proline-rich region of TonB (TonBΔ66-100) prevents formation of the 2:1 complex. Sedimentation velocity analytical ultracentrifugation of TonBΔ66-100 with FhuA revealed that a 1:1 TonB–FhuA complex is formed. Interactions between TonBΔ66-100 and FhuA were assessed by surface plasmon resonance, and their affinities were determined to be similar to those of TonB (FL)–FhuA. Presence of the FhuA-specific siderophore ferricrocin altered neither stoichiometry nor affinity of interaction, leading to our conclusion that the proline-rich region in TonB is important in forming a 2:1 high-affinity TonB–FhuA complex in vitro. Furthermore, TonBΔ66-100–FhuAΔ21-128 interactions demonstrated that the cork region of the OM receptor was also important in forming a complex. Together, these results demonstrate a novel function of the proline-rich region of TonB in mediating TonB–TonB interactions within the TonB–FhuA complex
    corecore