754 research outputs found

    Coupling to haloform molecules in intercalated C60?

    Full text link
    For field-effect-doped fullerenes it was reported that the superconducting transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br) crystals, than for pure C60. Initially this was explained by the expansion of the volume per C60-molecule and the corresponding increase in the density of states at the Fermi level in the intercalated crystals. On closer examination it has, however, turned out to be unlikely that this is the mechanism behind the increase in Tc. An alternative explanation of the enhanced transition temperatures assumes that the conduction electrons not only couple to the vibrational modes of the C60-molecule, but also to the modes of the intercalated molecules. We investigate the possibility of such a coupling. We find that, assuming the ideal bulk structure of the intercalated crystal, both a coupling due to hybridization of the molecular levels, and a coupling via dipole moments should be very small. This suggests that the presence of the gate-oxide in the field-effect-devices strongly affects the structure of the fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication

    Cherenkov Glue in Opaque Nuclear Medium

    Full text link
    The spectrum of Cherenkov gluons is calculated within the framework of in-medium QCD. It is compared with experimental data on the double-humped structure around the away-side jet obtained at RHIC. The values of the real and imaginary parts of the nuclear permittivity are obtained from these fits. It is shown that accounting for an additional smearing due to resonance-like production of final hadrons allows to achieve an agreement with experimental data

    An Exact Bosonization Rule for c=1 Noncritical String Theory

    Full text link
    We construct a string field theory for c=1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields.Comment: 17 pages, to appear in JHE

    The effects of macroscopic inhomogeneities on the magneto transport properties of the electron gas in two dimensions

    Full text link
    In experiments on electron transport the macroscopic inhomogeneities in the sample play a fundamental role. In this paper and a subsequent one we introduce and develop a general formalism that captures the principal features of sample inhomogeneities (density gradients, contact misalignments) in the magneto resistance data taken from low mobility heterostructures. We present detailed assessments and experimental investigations of the different regimes of physical interest, notably the regime of semiclassical transport at weak magnetic fields, the plateau-plateau transitions as well as the plateau-insulator transition that generally occurs at much stronger values of the external field only. It is shown that the semiclassical regime at weak fields plays an integral role in the general understanding of the experiments on the quantum Hall regime. The results of this paper clearly indicate that the plateau-plateau transitions, unlike the the plateau-insulator transition, are fundamentally affected by the presence of sample inhomogeneities. We propose a universal scaling result for the magneto resistance parameters. This result facilitates, amongst many other things, a detailed understanding of the difficulties associated with the experimental methodology of H.P. Wei et.al in extracting the quantum critical behavior of the electron gas from the transport measurements conducted on the plateau-plateau transitions.Comment: 20 pages, 9 figure

    Multidimensional continued fractions, dynamical renormalization and KAM theory

    Full text link
    The disadvantage of `traditional' multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we describe a simple algorithm based on the dynamics of flows on the homogeneous space SL(2,Z)\SL(2,R) (the space of lattices of covolume one) that indeed yields best possible approximations to any irrational vector. The algorithm is ideally suited for a number of dynamical applications that involve small divisor problems. We explicitely construct renormalization schemes for (a) the linearization of vector fields on tori of arbitrary dimension and (b) the construction of invariant tori for Hamiltonian systems.Comment: 51 page

    Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem

    Full text link
    We study a system of nonlinear partial differential equations resulting from the traditional modelling of oil engineering within the framework of the mechanics of a continuous medium. Recent results on the problem provide existence, uniqueness and regularity of the optimal solution. Here we obtain the first necessary optimality conditions.Comment: 9 page

    Emergent geometry from q-deformations of N=4 super Yang-Mills

    Full text link
    We study BPS states in a marginal deformation of super Yang-Mills on R x S^3 using a quantum mechanical system of q-commuting matrices. We focus mainly on the case where the parameter q is a root of unity, so that the AdS dual of the field theory can be associated to an orbifold of AdS_5x S^5. We show that in the large N limit, BPS states are described by density distributions of eigenvalues and we assign to these distributions a geometrical spacetime interpretation. We go beyond BPS configurations by turning on perturbative non-q-commuting excitations. Considering states in an appropriate BMN limit, we use a saddle point approximation to compute the BMN energy to all perturbative orders in the 't Hooft coupling. We also examine some BMN like states that correspond to twisted sector string states in the orbifold and we show that our geometrical interpretation of the system is consistent with the quantum numbers of the corresponding states under the quantum symmetry of the orbifold.Comment: 22 pages, 1 figure. v2: added references. v3:final published versio

    Franck-Condon Effect in Central Spin System

    Full text link
    We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction system. Here, the collective spins of the environment behave as the vibrational mode, which makes the electron to be transitioned mainly with the so-called "vertical transitions" in the conventional FC effect. The "vertical transition" for the central spin in the spin environment manifests as, the certain collective spin states of the environment is favored, which corresponds to the minimal change in the average of the total spin angular momentum.Comment: 8 pages, 8 figure

    Two-dimensional superstrings and the supersymmetric matrix model

    Full text link
    We present evidence that the supersymmetric matrix model of Marinari and Parisi represents the world-line theory of N unstable D-particles in type II superstring theory in two dimensions. This identification suggests that the matrix model gives a holographic description of superstrings in a two-dimensional black hole geometry.Comment: 22 pages, 2 figures; v2: corrected eqn 4.6; v3: corrected appendices and discussion of vacua, added ref

    Monte Carlo approach to nonperturbative strings -- demonstration in noncritical string theory

    Get PDF
    We show how Monte Carlo approach can be used to study the double scaling limit in matrix models. As an example, we study a solvable hermitian one-matrix model with the double-well potential, which has been identified recently as a dual description of noncritical string theory with worldsheet supersymmetry. This identification utilizes the nonperturbatively stable vacuum unlike its bosonic counterparts, and therefore it provides a complete constructive formulation of string theory. Our data with the matrix size ranging from 8 to 512 show a clear scaling behavior, which enables us to extract the double scaling limit accurately. The ``specific heat'' obtained in this way agrees nicely with the known result obtained by solving the Painleve-II equation with appropriate boundary conditions.Comment: 15 pages, 10 figures, LaTeX, JHEP3.cls; references added, typos correcte
    corecore