3,114 research outputs found
Phase relaxation of Faraday surface waves
Surface waves on a liquid air interface excited by a vertical vibration of a
fluid layer (Faraday waves) are employed to investigate the phase relaxation of
ideally ordered patterns. By means of a combined frequency-amplitude modulation
of the excitation signal a periodic expansion and dilatation of a square wave
pattern is generated, the dynamics of which is well described by a Debye
relaxator. By comparison with the results of a linear theory it is shown that
this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure
Crossover from a square to a hexagonal pattern in Faraday surface waves
We report on surface wave pattern formation in a Faraday experiment operated
at a very shallow filling level, where modes with a subharmonic and harmonic
time dependence interact. Associated with this distinct temporal behavior are
different pattern selection mechanisms, favoring squares or hexagons,
respectively. In a series of bifurcations running through a pair of
superlattices the surface wave pattern transforms between the two incompatible
symmetries. The close analogy to 2D and 3D crystallography is pointed out.Comment: 4 pages, 4 figure
The effect of different water temperatures on the release of the atrial natriuretic factor (ANF) during "head out water immersion (HOI)"
Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study
The optical birefringence of liquid n-hexane condensed in an array of
parallel silica channels of 7nm diameter and 400 micrometer length is studied
as a function of filling of the channels via the vapor phase. By an analysis
with the generalized Bruggeman effective medium equation we demonstrate that
such measurements are insensitive to the detailed geometrical (positional)
arrangement of the adsorbed liquid inside the channels. However, this technique
is particularly suitable to search for any optical anisotropies and thus
collective orientational order as a function of channel filling. Nevertheless,
no hints for such anisotropies are found in liquid n-hexane. The n-hexane
molecules in the silica nanochannels are totally orientationally disordered in
all condensation regimes, in particular in the film growth as well as in the
the capillary condensed regime. Thus, the peculiar molecular arrangement found
upon freezing of liquid n-hexane in nanochannel-confinement, where the
molecules are collectively aligned perpendicularly to the channels' long axes,
does not originate in any pre-alignment effects in the nanoconfined liquid due
to capillary nematization.Comment: 7 pages, 5 figure
Beeinflußt eine sogenannte Höhlentherapie den Atemwegswiderstand bei obstruktiven Lungenerkrankungen?
Preferred orientation of n-hexane crystallized in silicon nanochannels: A combined x-ray diffraction and sorption isotherm study
We present an x-ray diffraction study on n-hexane in tubular silicon channels
of approximately 10 nm diameter both as a function of the filling fraction f of
the channels and as a function of temperature. Upon cooling, confined n-hexane
crystallizes in a triclinic phase typical of the bulk crystalline state.
However, the anisotropic spatial confinement leads to a preferred orientation
of the confined crystallites, where the crystallographic direction
coincides with the long axis of the channels. The magnitude of this preferred
orientation increases with the filling fraction, which corroborates the
assumption of a Bridgman-type crystallization process being responsible for the
peculiar crystalline texture. This growth process predicts for a channel-like
confinement an alignment of the fastest crystallization direction parallel to
the long channel axis. It is expected to be increasingly effective with the
length of solidifying liquid parcels and thus with increasing f. In fact, the
fastest solidification front is expected to sweep over the full silicon
nanochannel for f=1, in agreement with our observation of a practically perfect
texture for entirely filled nanochannels
Real-time observation of interfering crystal electrons in high-harmonic generation
Accelerating and colliding particles has been a key strategy to explore the
texture of matter. Strong lightwaves can control and recollide electronic
wavepackets, generating high-harmonic (HH) radiation which encodes the
structure and dynamics of atoms and molecules and lays the foundations of
attosecond science. The recent discovery of HH generation in bulk solids
combines the idea of ultrafast acceleration with complex condensed matter
systems and sparks hope for compact solid-state attosecond sources and
electronics at optical frequencies. Yet the underlying quantum motion has not
been observable in real time. Here, we study HH generation in a bulk solid
directly in the time-domain, revealing a new quality of strong-field
excitations in the crystal. Unlike established atomic sources, our solid emits
HH radiation as a sequence of subcycle bursts which coincide temporally with
the field crests of one polarity of the driving terahertz waveform. We show
that these features hallmark a novel non-perturbative quantum interference
involving electrons from multiple valence bands. The results identify key
mechanisms for future solid-state attosecond sources and next-generation
lightwave electronics. The new quantum interference justifies the hope for
all-optical bandstructure reconstruction and lays the foundation for possible
quantum logic operations at optical clock rates
Energy evolution in time-dependent harmonic oscillator
The theory of adiabatic invariants has a long history, and very important
implications and applications in many different branches of physics,
classically and quantally, but is rarely founded on rigorous results. Here we
treat the general time-dependent one-dimensional harmonic oscillator, whose
Newton equation cannot be solved in general. We
follow the time-evolution of an initial ensemble of phase points with sharply
defined energy at time and calculate rigorously the distribution of
energy after time , which is fully (all moments, including the
variance ) determined by the first moment . For example,
, and all
higher even moments are powers of , whilst the odd ones vanish
identically. This distribution function does not depend on any further details
of the function and is in this sense universal. In ideal
adiabaticity , and the variance is
zero, whilst for finite we calculate , and for the
general case using exact WKB-theory to all orders. We prove that if is of class (all derivatives up to and including the order
are continuous) , whilst for class it is known to be exponential .Comment: 26 pages, 5 figure
- …
