Surface waves on a liquid air interface excited by a vertical vibration of a
fluid layer (Faraday waves) are employed to investigate the phase relaxation of
ideally ordered patterns. By means of a combined frequency-amplitude modulation
of the excitation signal a periodic expansion and dilatation of a square wave
pattern is generated, the dynamics of which is well described by a Debye
relaxator. By comparison with the results of a linear theory it is shown that
this practice allows a precise measurement of the phase diffusion constant.Comment: 5 figure