The optical birefringence of liquid n-hexane condensed in an array of
parallel silica channels of 7nm diameter and 400 micrometer length is studied
as a function of filling of the channels via the vapor phase. By an analysis
with the generalized Bruggeman effective medium equation we demonstrate that
such measurements are insensitive to the detailed geometrical (positional)
arrangement of the adsorbed liquid inside the channels. However, this technique
is particularly suitable to search for any optical anisotropies and thus
collective orientational order as a function of channel filling. Nevertheless,
no hints for such anisotropies are found in liquid n-hexane. The n-hexane
molecules in the silica nanochannels are totally orientationally disordered in
all condensation regimes, in particular in the film growth as well as in the
the capillary condensed regime. Thus, the peculiar molecular arrangement found
upon freezing of liquid n-hexane in nanochannel-confinement, where the
molecules are collectively aligned perpendicularly to the channels' long axes,
does not originate in any pre-alignment effects in the nanoconfined liquid due
to capillary nematization.Comment: 7 pages, 5 figure