8 research outputs found

    Autocrine Prostaglandin E2 Signaling Promotes Tumor Cell Survival and Proliferation in Childhood Neuroblastoma

    Get PDF
    Background: Prostaglandin E2 (PGE2) is an important mediator in tumor-promoting inflammation. High expression of cyclooxygenase-2 (COX-2) has been detected in the embryonic childhood tumor neuroblastoma, and treatment with COX inhibitors significantly reduces tumor growth. Here, we have investigated the significance of a high COX-2 expression in neuroblastoma by analysis of PGE2 production, the expression pattern and localization of PGE2 receptors and intracellular signal transduction pathways activated by PGE2. Principal Findings: A high expression of the PGE2 receptors, EP1, EP2, EP3 and EP4 in primary neuroblastomas, independent of biological and clinical characteristics, was detected using immunohistochemistry. In addition, mRNA and protein corresponding to each of the receptors were detected in neuroblastoma cell lines. Immunofluorescent staining revealed localization of the receptors to the cellular membrane, in the cytoplasm, and in the nuclear compartment. Neuroblastoma cells produced PGE2 and stimulation of serum-starved neuroblastoma cells with PGE2 increased the intracellular concentration of calcium and cyclic AMP with subsequent phosphorylation of Akt. Addition of 16,16-dimethyl PGE 2 (dmPGE2) increased cell viability in a time, dose- and cell line-dependent manner. Treatment of neuroblastoma cells with a COX-2 inhibitor resulted in a diminished cell growth and viability that was reversed by the addition of dmPGE2. Similarly, PGE 2 receptor antagonists caused a decrease in neuroblastoma cell viability in a dose-dependent manner

    Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review

    Get PDF
    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction

    On the mathematical modelling and data assimilation for air pollution assessment in the Tropical Andes

    No full text
    Air pollution assessment in the Tropical Andes requires a multidisciplinary approach. This can be supported from the understanding of the underlying biological dynamics and atmospheric behavior, to the mathematical approach for the proper use of all available information. This review paper touches on several aspects in which mathematical models can help to solve challenging problems regarding air pollution in reviewing the state-of-the-art at the global level and assessing the corresponding state of development as applied to the Tropical Andes. We address the complexities and challenges that modelling atmospheric dynamics in a mega-diverse region with abrupt topography entails. Understanding the relevance of monitoring and facing the problems of data scarcity, we call attention to the usefulness of data assimilation for uncertainty reduction, and how these techniques could help tackle the scarcity of regional monitoring networks to accelerate the implementation and development of modelling systems for air quality in the Tropical Andes. Finally, we suggest a cyberphysical framework for decision-making processes based on the data assimilation of chemical transport models, the forecast of scenarios, and their use in regulation and policy making. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature
    corecore