58 research outputs found

    Conformal Quivers and Melting Molecules

    Get PDF
    Quiver quantum mechanics describes the low energy dynamics of a system of wrapped D-branes. It captures several aspects of single and multicentered BPS black hole geometries in four-dimensional N=2\mathcal{N} = 2 supergravity such as the presence of bound states and an exponential growth of microstates. The Coulomb branch of an Abelian three node quiver is obtained by integrating out the massive strings connecting the D-particles. It allows for a scaling regime corresponding to a deep AdS2_2 throat on the gravity side. In this scaling regime, the Coulomb branch is shown to be an SL(2,R)SL(2,\mathbb{R}) invariant multi-particle superconformal quantum mechanics. Finally, we integrate out the strings at finite temperature---rather than in their ground state---and show how the Coulomb branch `melts' into the Higgs branch at high enough temperatures. For scaling solutions the melting occurs for arbitrarily small temperatures, whereas bound states can be metastable and thus long lived. Throughout the paper, we discuss how far the analogy between the quiver model and the gravity picture, particularly within the AdS2_2 throat, can be taken.Comment: 49 pages, 16 figure

    Molecular Longitudinal Tracking of Mycobacterium abscessus spp. during Chronic Infection of the Human Lung

    Get PDF
    <div><p>The <i>Mycobacterium abscessus</i> complex is an emerging cause of chronic pulmonary infection in patients with underlying lung disease. The <i>M. abscessus</i> complex is regarded as an environmental pathogen but its molecular adaptation to the human lung during long-term infection is poorly understood. Here we carried out a longitudinal molecular epidemiological analysis of 178 <i>M. abscessus</i> spp. isolates obtained from 10 cystic fibrosis (CF) and 2 non CF patients over a 13 year period. Multi-locus sequence and molecular typing analysis revealed that 11 of 12 patients were persistently colonized with the same genotype during the course of the infection while replacement of a <i>M. abscessus sensu stricto</i> strain with a <i>Mycobacterium massiliense</i> strain was observed for a single patient. Of note, several patients including a pair of siblings were colonized with closely-related strains consistent with intra-familial transmission or a common infection reservoir. In general, a switch from smooth to rough colony morphology was observed during the course of long-term infection, which in some cases correlated with an increasing severity of clinical symptoms. To examine evolution during long-term infection of the CF lung we compared the genome sequences of 6 sequential isolates of <i>Mycobacterium bolletii</i> obtained from a single patient over an 11 year period, revealing a heterogeneous clonal infecting population with mutations in regulators controlling the expression of virulence factors and complex lipids. Taken together, these data provide new insights into the epidemiology of <i>M. abscessus</i> spp. during long-term infection of the CF lung, and the molecular transition from saprophytic organism to human pathogen.</p></div

    Chemical Probes that Competitively and Selectively Inhibit Stat3 Activation

    Get PDF
    Signal transducer and activator of transcription (Stat) 3 is an oncogene constitutively activated in many cancer systems where it contributes to carcinogenesis. To develop chemical probes that selectively target Stat3, we virtually screened 920,000 small drug-like compounds by docking each into the peptide-binding pocket of the Stat3 SH2 domain, which consists of three sites—the pY-residue binding site, the +3 residue-binding site and a hydrophobic binding site, which served as a selectivity filter. Three compounds satisfied criteria of interaction analysis, competitively inhibited recombinant Stat3 binding to its immobilized pY-peptide ligand and inhibited IL-6-mediated tyrosine phosphorylation of Stat3. These compounds were used in a similarity screen of 2.47 million compounds, which identified 3 more compounds with similar activities. Examination of the 6 active compounds for the ability to inhibit IFN-γ-mediated Stat1 phosphorylation revealed that 5 of 6 were selective for Stat3. Molecular modeling of the SH2 domains of Stat3 and Stat1 bound to compound revealed that compound interaction with the hydrophobic binding site was the basis for selectivity. All 5 selective compounds inhibited nuclear-to-cytoplasmic translocation of Stat3, while 3 of 5 compounds induced apoptosis preferentially of breast cancer cell lines with constitutive Stat3 activation. Thus, virtual ligand screening of compound libraries that targeted the Stat3 pY-peptide binding pocket identified for the first time 3 lead compounds that competitively inhibited Stat3 binding to its pY-peptide ligand; these compounds were selective for Stat3 vs. Stat1 and induced apoptosis preferentially of breast cancer cells lines with constitutively activated Stat3

    Cucurbitacin I Inhibits Cell Motility by Indirectly Interfering with Actin Dynamics

    Get PDF
    Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. actin depolymerization experiments, cucurbitacin I had no effect on the rate of actin filament disassembly at the nanomolar concentrations that inhibit cell migration. At elevated concentrations, the depolymerization rate was also unaffected, although there was a delay in the initiation of depolymerization. Therefore, cucurbitacin I targets some factor involved in cellular actin dynamics other than actin itself. Two candidate proteins that play roles in actin depolymerization are the actin-severing proteins cofilin and gelsolin. Cucurbitacin I possesses electrophilic reactivity that may lead to chemical modification of its target protein, as suggested by structure-activity relationship data. However, mass spectrometry revealed no evidence for modification of purified cofilin or gelsolin by cucurbitacin I.Cucurbitacin I results in accumulation of actin filaments in cells by a unique indirect mechanism. Furthermore, the proximal target of cucurbitacin I relevant to cell migration is unlikely to be the same one involved in activation of the JAK2/STAT3 pathway

    Fungal endophytes from arid areas of Andalusia: high potential sources for antifungal and antitumoral agents

    Get PDF
    Native plant communities from arid areas present distinctive characteristics to survive in extreme conditions. The large number of poorly studied endemic plants represents a unique potential source for the discovery of novel fungal symbionts as well as host-specific endophytes not yet described. The addition of adsorptive polymeric resins in fungal fermentations has been seen to promote the production of new secondary metabolites and is a tool used consistently to generate new compounds with potential biological activities. A total of 349 fungal strains isolated from 63 selected plant species from arid ecosystems located in the southeast of the Iberian Peninsula, were characterized morphologically as well as based on their ITS/28S ribosomal gene sequences. The fungal community isolated was distributed among 19 orders including Basidiomycetes and Ascomycetes, being Pleosporales the most abundant order. In total, 107 different genera were identified being Neocamarosporium the genus most frequently isolated from these plants, followed by Preussia and Alternaria. Strains were grown in four different media in presence and absence of selected resins to promote chemical diversity generation of new secondary metabolites. Fermentation extracts were evaluated, looking for new antifungal activities against plant and human fungal pathogens, as well as, cytotoxic activities against the human liver cancer cell line HepG2. From the 349 isolates tested, 126 (36%) exhibited significant bioactivities including 58 strains with exclusive antifungal properties and 33 strains with exclusive activity against the HepG2 hepatocellular carcinoma cell line. After LCMS analysis, 68 known bioactive secondary metabolites could be identified as produced by 96 strains, and 12 likely unknown compounds were found in a subset of 14 fungal endophytes. The chemical profiles of the differential expression of induced activities were compared. As proof of concept, ten active secondary metabolites only produced in the presence of resins were purified and identified. The structures of three of these compounds were new and herein are elucidated.This work was supported by Fundación MEDINA and the Andalusian Government grant RNM-7987 ‘Sustainable use of plants and their fungal parasites from arid regions of Andalucía for new molecules useful for antifungals and neuroprotectors’

    Vertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation

    Get PDF
    Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations

    On the Inverse Problem of Binocular 3D Motion Perception

    Get PDF
    It is shown that existing processing schemes of 3D motion perception such as interocular velocity difference, changing disparity over time, as well as joint encoding of motion and disparity, do not offer a general solution to the inverse optics problem of local binocular 3D motion. Instead we suggest that local velocity constraints in combination with binocular disparity and other depth cues provide a more flexible framework for the solution of the inverse problem. In the context of the aperture problem we derive predictions from two plausible default strategies: (1) the vector normal prefers slow motion in 3D whereas (2) the cyclopean average is based on slow motion in 2D. Predicting perceived motion directions for ambiguous line motion provides an opportunity to distinguish between these strategies of 3D motion processing. Our theoretical results suggest that velocity constraints and disparity from feature tracking are needed to solve the inverse problem of 3D motion perception. It seems plausible that motion and disparity input is processed in parallel and integrated late in the visual processing hierarchy

    Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients
    corecore