151 research outputs found

    Khat and alcohol use and risky sex behaviour among in-school and out-of-school youth in Ethiopia

    Get PDF
    BACKGROUND: Khat (an evergreen plant with amphetamine-like properties) and alcohol are widely consumed among the youth of Ethiopia. However, their relationship to risky sexual behaviour is not well described. This study was conducted to describe the magnitude of risky sexual behaviour (unprotected sex and early initiation of sexual activity) and its association with Khat and alcohol consumption in Ethiopian youths. METHODS: A probabilistic national sample of 20,434 in-school and out-of-school youths aged between 15 and 24 years of age was selected and interviewed regarding their sexual behavior and substance use. RESULTS: Over 20% of out-of-school youth had unprotected sex during the 12-month period prior to interview compared to 1.4% of in-school youth. Daily Khat intake was also associated with unprotected sex: adjusted OR (95% CI) = 2.26 (1.92, 2.67). There was a significant and linear association between alcohol intake and unprotected sex, with those using alcohol daily having a three fold increased odds compared to those not using it: adj. OR (95% CI) = 3.05 (2.38, 3.91). Use of substances other than Khat was not associated with unprotected sex, but was associated with initiation of sexual activity: adj. OR (95% CI) = 2.54 (1.84, 3.51). CONCLUSION: A substantial proportion of out-of-school youth engage in risky sex. The use of Khat and alcohol and other substances is significantly and independently associated with risky sexual behaviour among Ethiopian youths

    Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    Get PDF
    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response

    Interactive models of communication at the nanoscale using nanoparticles that talk to one another

    Full text link
    [EN] 'Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating.A. L.-L. is grateful to 'La Caixa' Banking Foundation for his PhD fellowship. We wish to thank the Spanish Government (MINECO Projects MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; Díez, P.; Sánchez, A.; Marcos Martínez, MD.; Sancenón Galarza, F.; Martínez-Ruiz, P.; Villalonga, R.... (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications. 8:1-7. https://doi.org/10.1038/ncomms15511S178Tseng, R., Huang, J., Ouyang, J., Kaner, R. & Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 5, 1077–1080 (2005).Liu, R. & Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133, 20064–20067 (2011).Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).Tarn, D. et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 46, 792–801 (2013).Kline, T. & Paxton, W. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754–756 (2005).Akyildiz, I. F., Brunetti, F. & Blázquez, C. Nanonetworks: a new communication paradigm. Comput. Netw. 52, 2260–2279 (2008).Suda, T., Moore, M., Nakano, T., Egashira, R. & Enomoto, A. Exploratory research on molecular communication between nanomachines. Nat. Comput. 25, 1–30 (2005).Malak, D. & Akan, O. B. Molecular communication nanonetworks inside human body. Nano Commun. Netw. 3, 19–35 (2012).Akyildiz, I. F., Jornet, J. M. & Pierobon, M. Nanonetworks: a new frontier in communications. Commun. ACM 54, 84–89 (2011).Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. & Shuai, J. Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11, 135–148 (2012).Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).Dickschat, J. S. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369 (2010).Kerényi, Á., Bihary, D., Venturi, V. & Pongor, S. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes. PLoS ONE 8, e57947 (2013).Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396 (2004).Betke, K. M., Wells, C. A. & Hamm, H. E. GPCR mediated regulation of synaptic transmission. Prog. Neurobiol. 96, 304–321 (2012).Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).Ball, P. Chemistry meets computing. Nature 406, 118–120 (2000).de Silva, A. P. & McClenaghan, N. D. Molecular-Scale Logic Gates. Chem. Eur. J. 10, 574–586 (2004).Condon, A. Automata make antisense. Nature 429, 351–352 (2004).Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).Angelos, S., Yang, Y. W., Khashab, N. M., Stoddart, J. F. & Zink, J. I. Dual-controlled nanoparticles exhibiting AND logic. J. Am. Chem. Soc. 131, 11344–11346 (2009).Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).Lee, J. W. & Klajn, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 . Chem. Commun. 51, 2036–2039 (2015).Liu, D. et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. 50, 4103–4107 (2011).Chitode, J. S. Communication Theory Technical Publications (2010).Wood, J. T. Communication in Our Lives Wadsworth (2009).Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J. & Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 135, 14000–14003 (2013).Baeza, A., Guisasola, E., Ruiz-Hernández, E. & Vallet-Regí, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517–524 (2012).Zhang, Z. et al. Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 using DNA or molecular biomarkers as triggering stimuli. ACS Nano 7, 8455–8468 (2013).Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534 (2012).Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).Coll, C., Bernardos, A., Martínez-Máñez, R. & Sancenón, F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 46, 339–349 (2013).Aznar, E. et al. Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561–718 (2016).Díez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).Villalonga, R. et al. Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chem. Eur. J. 19, 7889–7894 (2013).Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S. & Donkor, K. K. Determination of thermodynamic pKa values of benzimidazole and benzimidazole derivatives by capillary electrophoresis. J. Sep. Sci. 32, 1087–1095 (2009).Sheffner, A. L. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. Ann. N. Y. Acad. Sci. 106, 298–310 (1963).Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature 241, 20–22 (1973).Yousef, F. O., Zughul, M. B. & Badwan, A. A. The modes of complexation of benzimidazole with aqueous β-cyclodextrin explored by phase solubility, potentiometric titration, 1H-NMR and molecular modeling studies. J. Incl. Phenom. Macrocycl. Chem. 57, 519–523 (2007).Sánchez, A., Díez, P., Martínez-Ruíz, P., Villalonga, R. & Pingarrón, J. M. Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochem. Commun. 30, 51–54 (2013).Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. & Koucheryavy, Y. The internet of Bio-Nano things. IEEE Commun. Mag. 53, 32–40 (2015).Sancenón, F., Pascual, L., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated silica mesoporous materials in sensing applications. ChemistryOpen 4, 418–437 (2015).Akyildiz, I. & Jornet, J. The Internet of nano-things. IEEE Wirel. Commun. 17, 58–63 (2010).Giménez, C. et al. Towards chemical communication between gated nanoparticles. Angew. Chem. Int. Ed. 53, 12629–12633 (2014).Davis, B. G., Lloyd, R. C. & Jones, J. B. Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J. Org. Chem. 63, 9614–9615 (1998)

    The relationship between the time of cerebral desaturation episodes and outcome in aneurysmal subarachnoid haemorrhage: a preliminary study.

    Get PDF
    In this preliminary study we investigated the relationship between the time of cerebral desaturation episodes (CDEs), the severity of the haemorrhage, and the short-term outcome in patients with aneurysmal subarachnoid haemorrhage (aSAH). Thirty eight patents diagnosed with aneurysmal subarachnoid haemorrhage were analysed in this study. Regional cerebral oxygenation (rSO2) was assessed using near infrared spectroscopy (NIRS). A CDE was defined as rSO2 < 60% with a duration of at least 30 min. The severity of the aSAH was assessed using the Hunt and Hess scale and the short-term outcome was evaluated utilizing the Glasgow Outcome Scale. CDEs were found in 44% of the group. The total time of the CDEs and the time of the longest CDE on the contralateral side were longer in patients with severe versus moderate aSAH [h:min]: 8:15 (6:26-8:55) versus 1:24 (1:18-4:18), p = 0.038 and 2:05 (2:00-5:19) versus 0:48 (0:44-2:12), p = 0.038. The time of the longest CDE on the ipsilateral side was longer in patients with poor versus good short-term outcome [h:min]: 5:43 (3:05-9:36) versus 1:47 (0:42-2:10), p = 0.018. The logistic regression model for poor short-term outcome included median ABP, the extent of the haemorrhage in the Fisher scale and the time of the longest CDE. We have demonstrated that the time of a CDE is associated with the severity of haemorrhage and short-term outcome in aSAH patients. A NIRS measurement may provide valuable predictive information and could be considered as additional method of neuromonitoring of patients with aSAH

    Biology of Francisella tularensis Subspecies holarctica Live Vaccine Strain in the Tick Vector Dermacentor variabilis

    Get PDF
    Background: The c-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Methodology/Principal Findings: Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.860.8610 1 and 1.160.03610 3 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42 % of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50 % of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then t

    The Threonine Protease Activity of Testes-Specific Protease 50 (TSP50) Is Essential for Its Function in Cell Proliferation

    Get PDF
    Background: Testes-specific protease 50 (TSP50), a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO) cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. Methodology/Principal Findings: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-kBIkBa complex, which is necessary for TSP50 to perform its function in cell proliferation. Conclusion: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50induce

    A Comprehensive Expression Profile of MicroRNAs in Porcine Pituitary

    Get PDF
    MicroRNAs (miRNAs) are an abundant class of small RNAs that regulate expressions of most genes. miRNAs play important roles in the pituitary, the “master” endocrine organ.However, we still don't know which role miRNAs play in the development of pituitary tissue or how much they contribute to the pituitary function. By applying a combination of microarray analysis and Solexa sequencing, we detected a total of 450 miRNAs in the porcine pituitary. Verification with RT-PCR showed a high degree of confidence for the obtained data. According to the current miRBase release17.0, the detected miRNAs included 169 known porcine miRNAs, 163 conserved miRNAs not yet identified in the pig, and 12 potentially new miRNAs not yet identified in any species, three of which were revealed using Northern blot. The pituitary might contain about 80.17% miRNA types belonging to the animal. Analysis of 10 highly expressed miRNAs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the enriched miRNAs were involved not only in the development of the organ but also in a variety of inter-cell and inner cell processes or pathways that are involved in the function of the organ

    Development and validation of the Multi-dimensional University Research Workplace Inventory (MDURWI)

    Get PDF
    WOS:000454839600005This study describes the development and validation of an instrument aimed toward measuring organizational features of an academic research workplace. The question pool was developed based on data from a pilot study (N = 43). The survey was deployed to academic researchers in the field of higher education research worldwide (N = 850). An exploratory factor analysis conducted on 36 questions, followed by confirmatory factor analysis, which lead to a final pool of 27 questions in five subscales, one of which divided into three lower-order factors. The final model exhibited very good fit (X2/df = 2.561; CFI = 0.972; PCFI = 0.784; RMSEA = 0.043; P[rmsea ? 0.05] < 0.001; AIC = 891.018; BCC = 987.839) and psychometric properties, in the form of factorial, convergent, and discriminant validity, as well as reliability and sensitivity. Implications of this instrument for research and policymaking are discussed, as well as future research directions.info:eu-repo/semantics/acceptedVersio
    corecore