56 research outputs found

    Chemokine (C-C motif) ligand 2 mediates direct and indirect fibrotic responses in human and murine cultured fibrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fibrocytes are a population of circulating bone-marrow-derived cells that express surface markers for leukocytes and mesenchymal cells, and are capable of differentiating into myofibroblasts. They have been observed at sites of active fibrosis and increased circulating numbers correlate with mortality in idiopathic pulmonary fibrosis (IPF). Inhibition of chemokine (C-C motif) receptor 2 (CCR2) during experimental models of lung fibrosis reduces lung collagen deposition, as well as reducing lung fibrocyte accumulation. The aim of the present study was to determine whether human and mouse fibrocytes express functional CCR2.</p> <p>Results</p> <p>Following optimized and identical human and murine fibrocyte isolation, both cell sources were shown to be positive for CCR2 by flow cytometry and this expression colocalized with collagen I and CD45. Human blood fibrocytes stimulated with the CCR2 ligand chemokine (C-C motif) ligand 2 (CCL2), demonstrated increased proliferation (<it>P </it>< 0.005) and differentiation into myofibroblasts (<it>P </it>< 0.001), as well as a chemotactic response (<it>P </it>< 0.05). Murine fibrocytes also responded to CCR2 stimulation, with CCL12 being more potent than CCL2.</p> <p>Conclusions</p> <p>This study directly compares the functional responses of human and murine fibrocytes to CCR2 ligands, and following comparable isolation techniques. We have shown comparable biological effects, strengthening the translatability of the murine models to human disease with respect to targeting the CCR2 axis to ameliorate disease in IPF patients.</p

    Alternatively Activated Mononuclear Phagocytes from the Skin Site of Infection and the Impact of IL-4RĪ± Signalling on CD4+T Cell Survival in Draining Lymph Nodes after Repeated Exposure to Schistosoma mansoni Cercariae

    Get PDF
    In a murine model of repeated exposure of the skin to infective Schistosoma mansoni cercariae, events leading to the priming of CD4 cells in the skin draining lymph nodes were examined. The dermal exudate cell (DEC) population recovered from repeatedly (4x) exposed skin contained an influx of mononuclear phagocytes comprising three distinct populations according to their differential expression of F4/80 and MHC-II. As determined by gene expression analysis, all three DEC populations (F4/80-MHC-IIhigh, F4/80+MHC-IIhigh, F4/80+MHC-IIint) exhibited major up-regulation of genes associated with alternative activation. The gene encoding RELMĪ± (hallmark of alternatively activated cells) was highly up-regulated in all three DEC populations. However, in 4x infected mice deficient in RELMĪ±, there was no change in the extent of inflammation at the skin infection site compared to 4x infected wild-type cohorts, nor was there a difference in the abundance of different mononuclear phagocyte DEC populations. The absence of RELMĪ± resulted in greater numbers of CD4+ cells in the skin draining lymph nodes (sdLN) of 4x infected mice, although they remained hypo-responsive. Using mice deficient for IL-4RĪ±, in which alternative activation is compromised, we show that after repeated schistosome infection, levels of regulatory IL-10 in the skin were reduced, accompanied by increased numbers of MHC-IIhigh cells and CD4+ T cells in the skin. There were also increased numbers of CD4+ T cells in the sdLN in the absence of IL-4RĪ± compared to cells from singly infected mice. Although their ability to proliferate was still compromised, increased cellularity of sdLN from 4x IL-4RĪ±KO mice correlated with reduced expression of Fas/FasL, resulting in decreased apoptosis and cell death but increased numbers of viable CD4+ T cells. This study highlights a mechanism through which IL-4RĪ± may regulate the immune system through the induction of IL-10 and regulation of Fas/FasL mediated cell death

    Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice

    Get PDF
    Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS) induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1Ī², more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress. Ā© 2012 Brass et al

    Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges

    Get PDF
    Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation

    Macrophage Transitions in Heart Valve Development and Myxomatous Valve Disease

    No full text
    • ā€¦
    corecore