1,579 research outputs found

    From Fermi Arcs to the Nodal Metal: Scaling of the Pseudogap with Doping and Temperature

    Full text link
    The pseudogap phase in the cuprates is a most unusual state of matter: it is a metal, but its Fermi surface is broken up into disconnected segments known as Fermi arcs. Using angle resolved photoemission spectroscopy, we show that the anisotropy of the pseudogap in momentum space and the resulting arcs depend only on the ratio T/T*(x), where T*(x) is the temperature below which the pseudogap first develops at a given hole doping x. In particular, the arcs collapse linearly with T/T* and extrapolate to zero extent as T goes to 0. This suggests that the T = 0 pseudogap state is a nodal liquid, a strange metallic state whose gapless excitations are located only at points in momentum space, just as in a d-wave superconductor.Comment: to appear, Nature Physics (July 2006

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig

    Switching of magnetic domains reveals evidence for spatially inhomogeneous superconductivity

    Full text link
    The interplay of magnetic and charge fluctuations can lead to quantum phases with exceptional electronic properties. A case in point is magnetically-driven superconductivity, where magnetic correlations fundamentally affect the underlying symmetry and generate new physical properties. The superconducting wave-function in most known magnetic superconductors does not break translational symmetry. However, it has been predicted that modulated triplet p-wave superconductivity occurs in singlet d-wave superconductors with spin-density wave (SDW) order. Here we report evidence for the presence of a spatially inhomogeneous p-wave Cooper pair-density wave (PDW) in CeCoIn5. We show that the SDW domains can be switched completely by a tiny change of the magnetic field direction, which is naturally explained by the presence of triplet superconductivity. Further, the Q-phase emerges in a common magneto-superconducting quantum critical point. The Q-phase of CeCoIn5 thus represents an example where spatially modulated superconductivity is associated with SDW order

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+ÎŽ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic

    The walkthrough method : an approach to the study of apps

    Get PDF
    Software applications (apps) are now prevalent in the digital media environment. They are the site of significant sociocultural and economic transformations across many domains, from health and relationships to entertainment and everyday finance. As relatively closed technical systems, apps pose new methodological challenges for sociocultural digital media research. This paper describes a method, grounded in a combination of science and technology studies with cultural studies, through which researchers can perform a critical analysis of a given app. The method involves establishing an app’s environment of expected use by identifying and describing its vision, operating model, and modes of governance. It then deploys a walkthrough technique to systematically and forensically step through the various stages of app registration and entry, everyday use, and discontinuation of use. The walkthrough method establishes a foundational corpus of data upon which can be built a more detailed analysis of an app’s intended purpose, embedded cultural meanings, and implied ideal users and uses. The walkthrough also serves as a foundation for further user-centred research that can identify how users resist these arrangements and appropriate app technology for their own purposes

    Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates

    Full text link
    The superconducting state of underdoped cuprates is often described in terms of a single energy-scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the underdoped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the underdoped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the superconducting gap and antinodal regions. While antinodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations.Comment: 16 pages, 5 figure

    Web-based alcohol intervention:study of systematic attrition of heavy drinkers

    Get PDF
    Background: Web-based alcohol interventions are a promising way to reduce alcohol consumption because of their anonymity and the possibility of reaching a high numbers of individuals including heavy drinkers. However, Web-based interventions are often characterized by high rates of attrition. To date, very few studies have investigated whether individuals with higher alcohol consumption show higher attrition rates in Web-based alcohol interventions as compared with individuals with lower alcohol consumption. Objectives: The aim of this study was to examine the attrition rate and predictors of attrition in a Web-based intervention study on alcohol consumption. Methods: The analysis of the predictors of attrition rate was performed on data collected in a Web-based randomized control trial. Data collection took place at the University of Konstanz, Germany. A total of 898 people, which consisted of 46.8% males (420/898) and 53.2% females (478/898) with a mean age of 23.57 years (SD 5.19), initially volunteered to participate in a Web-based intervention study to reduce alcohol consumption. Out of the sample, 86.9% (781/898) were students. Participants were classified as non-completers (439/898, 48.9%) if they did not complete the Web-based intervention. Potential predictors of attrition were self-reported: alcohol consumption in the last seven days, per week, from Monday to Thursday, on weekends, excessive drinking behavior measured with the Alcohol Use Disorder Identification Test (AUDIT), and drinking motives measured by the Drinking Motive Questionnaire (DMQ-R SF). Results: Significant differences between completers and non-completers emerged regarding alcohol consumption in the last seven days (B=-.02, P=.05, 95% CI [0.97-1.00]), on weekends (B=-.05, P=.003, 95% CI [0.92-0.98]), the AUDIT (B=-.06, P=.007, 95% CI [0.90-0.98], and the status as a student (B=.72, P=.001, 95% CI [1.35-3.11]). Most importantly, non-completers had a significantly higher alcohol consumption compared with completers. Conclusions: Hazardous alcohol consumption appears to be a key factor of the dropout rate in a Web-based alcohol intervention study. Thus, it is important to develop strategies to keep participants who are at high risk in Web-based interventions

    Quality of life, characteristics and survival of patients with HIV and lymphoma

    Get PDF
    We sought to compare the quality of life (QOL), characteristics, and survival of patients with non-Hodgkin lymphoma (NHL) with and without human immunodeficiency virus (HIV) infection. Using the population-based cancer registry for Orange and San Diego Counties, We recruited 50 patients with HIV and systemic NHL (cases) and 50 age, sex and race-matched NHL patients without HIV (controls) diagnosed with NHL during 2002–2006. Patients completed a medical history survey and QOL instrument, the Functional Assessment of Human Immunodeficiency Virus Infection (FAHI) for cases and Functional Assessment of Cancer Therapy-General (FACT G) for controls. HIV-infected patients had worse overall QOL and survival than uninfected patients. QOL differences were more marked in the areas of functional, physical and social well-being than in the area of emotional well-being. HIV-infected patients had lower income and were less likely to have private insurance and more likely to have diffuse large B cell histology than uninfected patients. HIV-infected NHL patients had worse QOL and survival than uninfected patients, due to a combination of co-morbidity, aggressive histology and lack of social support. However, their emotional well-being was comparable to that of uninfected NHL patients and better than historical norms for the HIV-infected

    Viral non-coding RNA inhibits HNF4α expression in HCV associated hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV) infection is an established cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC); however, it is unclear if the virus plays a direct role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is critical determinant of epithelial architecture and hepatic development; depletion of HNF4α is correlated with oncogenic transformation. We explored the viral role in the inhibition of HNF4α expression, and consequent induction of tumor-promoting genes in HCV infection-associated HCC. METHODS: Western blot analysis was used to monitor the changes in expression levels of oncogenic proteins in liver tissues from HCV-infected humanized mice. The mechanism of HNF4α depletion was studied in HCV-infected human hepatocyte cultures in vitro. Targeting of HNF4α expression by viral non-coding RNA was examined by inhibition of Luciferase HNF4α 3’-UTR reporter. Modulation of invasive properties of HCV-infected cells was examined by Matrigel cell migration assay. RESULTS: Results show inhibition of HNF4α expression by targeting of HNF4α 3’-UTR by HCV-derived small non-coding RNA, vmr11. Vmr11 enhances the invasive properties of HCV-infected cells. Loss of HNF4α in HCV-infected liver tumors of humanized mice correlates with the induction of epithelial to mesenchymal transition (EMT) genes. CONCLUSIONS: We show depletion of HNF4α in liver tumors of HCV-infected humanized mice by HCV derived small non-coding RNA (vmr11) and resultant induction of EMT genes, which are critical determinants of tumor progression. These results suggest a direct viral role in the development of hepatocellular carcinoma
    • 

    corecore