28 research outputs found

    A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque

    Get PDF
    [EN] Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework.This research was supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Economic Development and Innovation (MEDI). We thank Dr. Hongying Wang for invaluable help with drug administration and animal careHassani, SA.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid-RamĂ­rez, JS.; Van Der Meer, MA.; Tiesinga, P.... (2017). A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque. Scientific Reports. 7:1-19. https://doi.org/10.1038/srep40606S1197Arnsten, A. F., Wang, M. J. & Paspalas, C. D. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76, 223–239 (2012).Arnsten, A. F. & Dudley, A. G. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder. Behav Brain Funct 1, 2 (2005).Clark, K. L. & Noudoost, B. The role of prefrontal catecholamines in attention and working memory. Front Neural Circuits 8, 33 (2014).Wang, M. et al. Neuronal basis of age-related working memory decline. Nature 476, 210–213 (2011).Wang, M. et al. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell 129, 397–410 (2007).Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450 (2005).Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci, 1–100, doi: 10.1017/S0140525X15000667 (2015).Amemiya, S. & Redish, A. D. Manipulating Decisiveness in Decision Making: Effects of Clonidine on Hippocampal Search Strategies. J Neurosci 36, 814–827 (2016).Doya, K. Metalearning and neuromodulation. Neural Netw 15, 495–506 (2002).Uhlen, S., Muceniece, R., Rangel, N., Tiger, G. & Wikberg, J. E. Comparison of the binding activities of some drugs on alpha 2A, alpha 2B and alpha 2C-adrenoceptors and non-adrenergic imidazoline sites in the guinea pig. Pharmacology & toxicology 76, 353–364 (1995).Mao, Z. M., Arnsten, A. F. & Li, B. M. Local infusion of an alpha-1 adrenergic agonist into the prefrontal cortex impairs spatial working memory performance in monkeys. Biological psychiatry 46, 1259–1265 (1999).Arnsten, A. F. & Goldman-Rakic, P. S. Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11, 583–590 (1990).Franowicz, J. S. & Arnsten, A. F. The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136, 8–14 (1998).Caetano, M. S. et al. Noradrenergic control of error perseveration in medial prefrontal cortex. Frontiers in Integrative Neuroscience 6, 125 (2012).Kim, S., Bobeica, I., Gamo, N. J., Arnsten, A. F. & Lee, D. Effects of alpha-2A adrenergic receptor agonist on time and risk preference in primates. Psychopharmacology 219, 363–375 (2012).Seu, E., Lang, A., Rivera, R. J. & Jentsch, J. D. Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology 202, 505–519 (2009).Kawaura, K., Karasawa, J., Chaki, S. & Hikichi, H. Stimulation of postsynapse adrenergic alpha2A receptor improves attention/cognition performance in an animal model of attention deficit hyperactivity disorder. Behav Brain Res 270, 349–356 (2014).Aoki, C., Go, C. G., Venkatesan, C. & Kurose, H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650, 181–204 (1994).Barth, A. M., Vizi, E. S., Zelles, T. & Lendvai, B. Alpha2-adrenergic receptors modify dendritic spike generation via HCN channels in the prefrontal cortex. J Neurophysiol 99, 394–401 (2008).Ji, X. H., Ji, J. Z., Zhang, H. & Li, B. M. Stimulation of alpha2-adrenoceptors suppresses excitatory synaptic transmission in the medial prefrontal cortex of rat. Neuropsychopharmacology 33, 2263–2271 (2008).Yi, F., Liu, S. S., Luo, F., Zhang, X. H. & Li, B. M. Signaling mechanism underlying alpha2A -adrenergic suppression of excitatory synaptic transmission in the medial prefrontal cortex of rats. Eur J Neurosci 38, 2364–2373 (2013).Engberg, G. & Eriksson, E. Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn-Schmiedeberg’s archives of pharmacology 343, 472–477 (1991).Jakala, P. et al. Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 20, 460–470 (1999).Jakala, P. et al. Guanfacine and clonidine, alpha 2-agonists, improve paired associates learning, but not delayed matching to sample, in humans. Neuropsychopharmacology 20, 119–130 (1999).Muller, U. et al. Lack of effects of guanfacine on executive and memory functions in healthy male volunteers. Psychopharmacology 182, 205–213 (2005).Scahill, L. et al. A placebo-controlled study of guanfacine in the treatment of children with tic disorders and attention deficit hyperactivity disorder. The American journal of psychiatry 158, 1067–1074 (2001).Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19, 404–413 (2016).Stephan, K. E. et al. Computational neuroimaging strategies for single patient predictions. NeuroImage in press (2015).Arnsten, A. F., Cai, J. X. & Goldman-Rakic, P. S. The alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes. J Neurosci 8, 4287–4298 (1988).Callado, L. F. & Stamford, J. A. Alpha2A- but not alpha2B/C-adrenoceptors modulate noradrenaline release in rat locus coeruleus: voltammetric data. Eur J Pharmacol 366, 35–39 (1999).Millan, M. J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature reviews. Drug discovery 11, 141–168 (2012).Niv, Y. et al. Reinforcement learning in multidimensional environments relies on attention mechanisms. J Neurosci 35, 8145–8157 (2015).Balcarras, M., Ardid, S., Kaping, D., Everling, S. & Womelsdorf, T. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness. J Cogn Neurosci 28, 333–349 (2016).Redish, A. D., Jensen, S., Johnson, A. & Kurth-Nelson, Z. Reconciling reinforcement learning models with behavioral extinction and renewal: implications for addiction, relapse, and problem gambling. Psychol Rev 114, 784–805 (2007).Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat Neurosci 15, 1040–1046 (2012).O’Reilly, J. X. et al. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc Natl Acad Sci USA 110, 3660–3669 (2013).Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).Womelsdorf, T. & Everling, S. Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends Neurosci 38, 682–700 (2015).Yang, Y. et al. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci USA 110, 12078–12083 (2013).Aston-Jones, G., Rajkowski, J. & Cohen, J. Role of locus coeruleus in attention and behavioral flexibility. Biological psychiatry 46, 1309–1320 (1999).Cole, B. J. & Robbins, T. W. Forebrain norepinephrine: role in controlled information processing in the rat. Neuropsychopharmacology 7, 129–142 (1992).Dalley, J. W., Cardinal, R. N. & Robbins, T. W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neuroscience and biobehavioral reviews 28, 771–784 (2004).Devauges, V. & Sara, S. J. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res 39, 19–28 (1990).Connor, D. F., Arnsten, A. F., Pearson, G. S. & Greco, G. F. Guanfacine extended release for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. Expert opinion on pharmacotherapy 15, 1601–1610 (2014).Sallee, F. R. et al. Guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder: a placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 48, 155–165 (2009).Steere, J. C. & Arnsten, A. F. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav Neurosci 111, 883–891 (1997).Doya, K. Modulators of decision making. Nat Neurosci 11, 410–416 (2008).Wang, X. J. & Krystal, J. H. Computational psychiatry. Neuron 84, 638–654 (2014).Wiecki, T. V. et al. A Computational Cognitive Biomarker for Early-Stage Huntington’s Disease. PLoS One 11, e0148409, doi: 10.1371/journal.pone.0148409 (2016).Huys, Q. J., Pizzagalli, D. A., Bogdan, R. & Dayan, P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3, 12 (2013).Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr Opin Neurobiol 20, 251–256 (2010).Voon, V. et al. Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry 20, 345–352 (2015).Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience 14, 154–162 (2011).Adams, R. A., Huys, Q. J. M. & Roiser, J. P. Computational Psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery, and Psychiatry 87, 53–63 (2015).Schlagenhauf, F. et al. Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage 89, 171–180 (2014).HarlĂ©, K. M. et al. Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use. Brain 138, 3413–3426 (2015).Zhang, J. et al. Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease. Brain 139, 161–173 (2016).Frank, M. J. et al. fMRI and EEG Predictors of Dynamic Decision Parameters during Human Reinforcement Learning. Journal of Neuroscience 35, 485–494 (2015).Smith, A. C. & Brown, E. N. Estimating a state-space model from point process observations. Neural Comput 15, 965–991 (2003).Wilson, R. C. & Niv, Y. Inferring relevance in a changing world. Frontiers in human neuroscience 5, 189 (2011).RĂ€mĂ€, P. et al. Medetomidine, atipamezole, and guanfacine in delayed response performance of aged monkeys. Pharmacology Biochemistry and Behavior 55, 415–422 (1996).Arnsten, A. F. T. & Contant, T. A. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology 108, 159–169 (1992).O’Neill, J. et al. Effects of guanfacine on three forms of distraction in the aging macaque. Life Sciences 67, 877–885 (2000).Wang, M., Ji, J.-Z. & Li, B.-M. The α2A-Adrenergic Agonist Guanfacine Improves Visuomotor Associative Learning in Monkeys. Neuropsychopharmacology 29, 86–92 (2004).Witte, E. a. & Marrocco, R. T. Alteration of brain noradrenergic activity in rhesus monkeys affects the alerting component of covert orienting. Psychopharmacology 132, 315–323 (1997).Decamp, E., Clark, K. & Schneider, J. S. Effects of the alpha-2 adrenoceptor agonist guanfacine on attention and working memory in aged non-human primates. European Journal of Neuroscience 34, 1018–1022 (2011)

    Influences of State and Trait Affect on Behavior, Feedback-Related Negativity, and P3b in the Ultimatum Game

    No full text
    The present study investigates how different emotions can alter social bargaining behavior. An important paradigm to study social bargaining is the Ultimatum Game. There, a proposer gets a pot of money and has to offer part of it to a responder. If the responder accepts, both players get the money as proposed by the proposer. If he rejects, none of the players gets anything. Rational choice models would predict that responders accept all offers above 0. However, evidence shows that responders typically reject a large proportion of all unfair offers. We analyzed participants’ behavior when they played the Ultimatum Game as responders and simultaneously collected electroencephalogram data in order to quantify the feedback-related negativity and P3b components. We induced state affect (momentarily emotions unrelated to the task) via short movie clips and measured trait affect (longer-lasting emotional dispositions) via questionnaires. State happiness led to increased acceptance rates of very unfair offers. Regarding neurophysiology, we found that unfair offers elicited larger feedback-related negativity amplitudes than fair offers. Additionally, an interaction of state and trait affect occurred: high trait negative affect (subsuming a variety of aversive mood states) led to increased feedback-related negativity amplitudes when participants were in an angry mood, but not if they currently experienced fear or happiness. We discuss that increased rumination might be responsible for this result, which might not occur, however, when people experience happiness or fear. Apart from that, we found that fair offers elicited larger P3b components than unfair offers, which might reflect increased pleasure in response to fair offers. Moreover, high trait negative affect was associated with decreased P3b amplitudes, potentially reflecting decreased motivation to engage in activities. We discuss implications of our results in the light of theories and research on depression and anxiety

    The neural signatures of egocentric bias in normative decision-making

    No full text
    Bargaining parties often disagree on what fair is, due to the reason that people are prone to believe that what favors oneself is fair, i.e., an egocentric bias. In this study, we investigated the neural signatures underlying egocentric bias in fairness decision-making, conjoining an adapted ultimatum game (UG) with event-related fMRI and functional connectivity. Participants earned monetary rewards with a partner in a production stage, wherein their contributions to the earnings were manipulated. Afterwards, the joint earnings were randomly divided, and the distribution was presented simultaneously with contribution information to participants, who accepted/rejected distributions of earnings as the same manner in standard UG. We identified an egocentric bias in fairness decisions, such that participants frequently rejected self-contributed disadvantageous outcomes, but much less so in response to other-contributed advantageous outcomes, although both involved mismatch between contribution and payoff. This bias was underpinned by regions involved in representing fairness norms, including the anterior insula and dorsal anterior cingulate cortex (dACC). Furthermore, the thalamus activity was predictive of the bias, such that the level of egocentric bias decreased as a function of the activation level of the thalamus. Finally, our functional-connectivity findings indicated that the thalamus worked together with insula and dACC to modulate behavioral egocentric bias in fairness-related decisions. Our findings uncover the neural basis underlying the modulation of egocentric bias in normative decision-making, and highlight the role of neural circuits associated with norm enforcement in this phenomenon
    corecore