21 research outputs found
The Accelerations of Stars Orbiting the Milky Way's Central Black Hole
Recent measurements, of the velocities of stars near the center of the Milky
Way have provided the strongest evidence for the presence of a supermassive
black hole in a galaxy, but the observational uncertainties poorly constrain
many of the properties of the black hole. Determining the accelerations of
stars in their orbits around the center provides much more precise information
about the position and mass of the black hole. Here we report measurements of
the accelerations for three stars located ~0.005 pc from the central radio
source Sgr A*; these accelerations are comparable to those experienced by the
Earth as it orbits the Sun. These data increase the inferred minimum mass
density in the central region of the Galaxy by an order of magnitude relative
to previous results and localized the dark mass to within 0.05 +- 0.04 arcsec
of the nominal position of Sgr A*. In addition, the orbital period of one of
the observed stars could be as short as 15 years, allowing us the opportunity
in the near future to observe an entire period.Comment: To appear in September 21 2000 issue of Natur
Host Responses in Life-History Traits and Tolerance to Virus Infection in Arabidopsis thaliana
Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host–parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV). Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues
Atmospheric electrification in dusty, reactive gases in the solar system and beyond
Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation