19 research outputs found

    Visual adaptation enhances action sound discrimination

    Get PDF
    Prolonged exposure, or adaptation, to a stimulus in one modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in one modality can bias perception in another modality. Here we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory or audiovisual hand actions enhanced discrimination between two subsequently presented hand action sounds. Discrimination was most enhanced when the visual action ‘matched’ the auditory action. In addition, prior adaptation to a visual, auditory or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation induced crossmodal enhancements cannot be explained by post-perceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli

    Motor activity improves temporal expectancy

    Get PDF
    Certain brain areas involved in interval timing are also important in motor activity. This raises the possibility that motor activity might influence interval timing. To test this hypothesis, we assessed interval timing in healthy adults following different types of training. The pre- and post-training tasks consisted of a button press in response to the presentation of a rhythmic visual stimulus. Alterations in temporal expectancy were evaluated by measuring response times. Training consisted of responding to the visual presentation of regularly appearing stimuli by either: (1) pointing with a whole-body movement, (2) pointing only with the arm, (3) imagining pointing with a whole-body movement, (4) simply watching the stimulus presentation, (5) pointing with a whole-body movement in response to a target that appeared at irregular intervals (6) reading a newspaper. Participants performing a motor activity in response to the regular target showed significant improvements in judgment times compared to individuals with no associated motor activity. Individuals who only imagined pointing with a whole-body movement also showed significant improvements. No improvements were observed in the group that trained with a motor response to an irregular stimulus, hence eliminating the explanation that the improved temporal expectations of the other motor training groups was purely due to an improved motor capacity to press the response button. All groups performed a secondary task equally well, hence indicating that our results could not simply be attributed to differences in attention between the groups. Our results show that motor activity, even when it does not play a causal or corrective role, can lead to improved interval timing judgments

    Numerical magnitude affects temporal memories but not time encoding

    Get PDF
    Previous research has suggested that the perception of time is influenced by concurrent magnitude information (e.g., numerical magnitude in digits, spatial distance), but the locus of the effect is unclear, with some findings suggesting that concurrent magnitudes such as space affect temporal memories and others suggesting that numerical magnitudes in digits affect the clock speed during time encoding. The current paper reports 6 experiments in which participants perceived a stimulus duration and then reproduced it. We showed that though a digit of a large magnitude (e.g., 9), relative to a digit of a small magnitude (e.g., 2), led to a longer reproduced duration when the digits were presented during the perception of the stimulus duration, such a magnitude effect disappeared when the digits were presented during the reproduction of the stimulus duration. These findings disconfirm the account that large numerical magnitudes accelerate the speed of an internal clock during time encoding, as such an account incorrectly predicts that a large numerical magnitude should lead to a shorter reproduced duration when presented during reproduction. Instead, the findings suggest that numerical magnitudes, like other magnitudes such as space, affect temporal memories when numerical magnitudes and temporal durations are concurrently held in memory. Under this account, concurrent numerical magnitudes have the chance to influence the memory of the perceived duration when they are presented during perception but not when they are presented at the reproduction stage

    The scope and precision of specific temporal expectancy: Evidence from a variable foreperiod paradigm

    No full text
    Recent evidence from choice response time experiments with variable foreperiods (FPs) has shown that temporal expectancy can be event specific. When a certain target appears particularly frequent after one certain FP, participants tend to expect that target after that FP. This typically results in best performance for that target when it appears after that FP. In the present study, we investigated how temporally precise event-specific temporal expectancy is, and in which range of FPs it can be found. Two target stimuli were asymmetrically distributed over two “peak-FPs” and were equally distributed over 13 additional FPs. Event-specific expectancies were found for peak-FP pairs of 500/1,100 ms and 300/500 ms. Furthermore, the event expectancies generalized to a wide range of nonpeak FPs surrounding the peak FPs
    corecore