103 research outputs found

    A re-appraisal of the reliability of the 20 m multi-stage shuttle run test

    Get PDF
    This is the author's PDF version of an article published in European journal of applied physiology in 2007. The original publication is available at www.springerlink.co

    Prediction of peak oxygen uptake in children using submaximal ratings of perceived exertion during treadmill exercise

    Get PDF
    Purpose: This study assessed the utility of the Children’s Effort Rating Table (CERT) and the Eston-Parfitt (EP) Scale in estimating peak oxygen uptake (V• O2peak) in children, during cardiopulmonary exercise testing (CPET) on a treadmill. Methods: Fifty healthy children (n=21 boys; 9.4 ± 0.9 y) completed a continuous, incremental protocol until the attainment of V• O2peak. Oxygen uptake (V• O2) was measured continuously, and Ratings of Perceived Exertion (RPE) were estimated at the end of each exercise stage using the CERT and the EP Scale. Ratings up to- and including RPE 5 and 7, from both the CERT (CERT 5, CERT 7) and EP Scale (EP 5, EP 7), were linearly regressed against the corresponding V• O2, to both maximal RPE (CERT 10, EP 10) and terminal RPE (CERT 9, EP 9). Results: There were no differences between measured- and predicted V• O2peak from CERT 5, CERT 7, EP 5 and EP 7 when extrapolated to either CERT 9 or EP 9 (P > .05). Pearson’s correlations of r = 0.64-0.86 were observed between measured- and predicted V• O2peak, for all perceptual ranges investigated. However, only EP 7 provided a small difference when considering the Standard Error of Estimate, suggesting that the prediction of V• O2peak from EP 7 would be within 10% of measured V• O2peak. Conclusions: Although robust estimates of V• O2peak may be elicited using both the CERT and EP Scale during a single CPET with children, the most accurate estimates of V• O2peak occur when extrapolating from EP 7

    An open-label pilot study of the effectiveness of adalimumab in patients with rheumatoid arthritis and previous infliximab treatment: relationship to reasons for failure and anti-infliximab antibody status

    Get PDF
    This prospective open-label pilot study evaluated the effectiveness and safety of adalimumab and the relationship to antibodies against infliximab (IFX) in adult patients with active rheumatoid arthritis (RA) who had been treated previously with IFX and experienced treatment failure owing to lack or loss of response or intolerance. Patients self-administered adalimumab 40 mg subcutaneously every other week for 16 weeks, followed by maintenance therapy for up to Week 56. Measures of effectiveness included American College of Rheumatology (ACR) and European League Against Rheumatism (EULAR) response criteria, 28-joint Disease Activity Score, and the Health Assessment Questionnaire Disability Index. Serum IFX concentrations, human antichimeric antibody against IFX (HACA), adalimumab serum concentrations, antiadalimumab antibody, and safety also were assessed. Of the 41 enrolled patients, 37 completed 16 weeks and 30 completed 56 weeks of treatment. Patients experienced clinically meaningful improvements in all measures of RA activity, with greater response rates observed for patients who had experienced loss of initial response to or intolerance of IFX. At Week 16, 46% of patients achieved an ACR20 and 28% achieved an ACR50; 61% achieved an at least moderate and 17% achieved a good EULAR response. Clinical benefit was maintained through Week 56 in all effectiveness parameters. Baseline HACA status did not significantly impact effectiveness. No new safety signals were observed; neither former IFX intolerance status nor baseline HACA status had a clinically relevant impact on adverse event frequency or severity. Adalimumab was effective and well-tolerated in patients with RA who previously failed IFX therapy, irrespective of reason for discontinuation and of HACA status

    Expansion of Intestinal Epithelial Stem Cells during Murine Development

    Get PDF
    Murine small intestinal crypt development is initiated during the first postnatal week. Soon after formation, overall increases in the number of crypts occurs through a bifurcating process called crypt fission, which is believed to be driven by developmental increases in the number of intestinal stem cells (ISCs). Recent evidence suggests that a heterogeneous population of ISCs exists within the adult intestine. Actively cycling ISCs are labeled by Lgr5, Ascl2 and Olfm4; whereas slowly cycling or quiescent ISC are marked by Bmi1 and mTert. The goal of this study was to correlate the expression of these markers with indirect measures of ISC expansion during development, including quantification of crypt fission and side population (SP) sorting. Significant changes were observed in the percent of crypt fission and SP cells consistent with ISC expansion between postnatal day 14 and 21. Quantitative real-time polymerase chain reaction (RT-PCR) for the various ISC marker mRNAs demonstrated divergent patterns of expression. mTert surged earliest, during the first week of life as crypts are initially being formed, whereas Lgr5 and Bmi1 peaked on day 14. Olfm4 and Ascl2 had variable expression patterns. To assess the number and location of Lgr5-expressing cells during this period, histologic sections from intestines of Lgr5-EGFP mice were subjected to quantitative analysis. There was attenuated Lgr5-EGFP expression at birth and through the first week of life. Once crypts were formed, the overall number and percent of Lgr5-EGFP positive cells per crypt remain stable throughout development and into adulthood. These data were supported by Lgr5 in situ hybridization in wild-type mice. We conclude that heterogeneous populations of ISCs are expanding as measured by SP sorting and mRNA expression at distinct developmental time points

    Synaptic scaffold evolution generated components of vertebrate cognitive complexity

    Get PDF
    The origins and evolution of higher cognitive functions, including complex forms of learning, attention and executive functions, are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 million years ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report, to our knowledge, the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in each of the four Dlg paralogs showed that simple associative learning required Dlg4, whereas Dlg2 and Dlg3 diversified to have opposing functions in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed that Dlg2\u27s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 million years. Dlg-family mutations underlie psychiatric disorders, suggesting that genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness

    Noninvasive Assessment of Antenatal Hydronephrosis in Mice Reveals a Critical Role for Robo2 in Maintaining Anti-Reflux Mechanism

    Get PDF
    Antenatal hydronephrosis and vesicoureteral reflux (VUR) are common renal tract birth defects. We recently showed that disruption of the Robo2 gene is associated with VUR in humans and antenatal hydronephrosis in knockout mice. However, the natural history, causal relationship and developmental origins of these clinical conditions remain largely unclear. Although the hydronephrosis phenotype in Robo2 knockout mice has been attributed to the coexistence of ureteral reflux and obstruction in the same mice, this hypothesis has not been tested experimentally. Here we used noninvasive high-resolution micro-ultrasonography and pathological analysis to follow the progression of antenatal hydronephrosis in individual Robo2-deficient mice from embryo to adulthood. We found that hydronephrosis progressed continuously after birth with no spontaneous resolution. With the use of a microbubble ultrasound contrast agent and ultrasound-guided percutaneous aspiration, we demonstrated that antenatal hydronephrosis in Robo2-deficient mice is caused by high-grade VUR resulting from a dilated and incompetent ureterovesical junction rather than ureteral obstruction. We further documented Robo2 expression around the developing ureterovesical junction and identified early dilatation of ureteral orifice structures as a potential fetal origin of antenatal hydronephrosis and VUR. Our results thus demonstrate that Robo2 is crucial for the formation of a normal ureteral orifice and for the maintenance of an effective anti-reflux mechanism. This study also establishes a reproducible genetic mouse model of progressive antenatal hydronephrosis and primary high-grade VUR

    Subjecting Elite Athletes to Inspiratory Breathing Load Reveals Behavioral and Neural Signatures of Optimal Performers in Extreme Environments

    Get PDF
    Background: It is unclear whether and how elite athletes process physiological or psychological challenges differently than healthy comparison subjects. In general, individuals optimize exercise level as it relates to differences between expected and experienced exertion, which can be conceptualized as a body prediction error. The process of computing a body prediction error involves the insular cortex, which is important for interoception, i.e. the sense of the physiological condition of the body. Thus, optimal performance may be related to efficient minimization of the body prediction error. We examined the hypothesis that elite athletes, compared to control subjects, show attenuated insular cortex activation during an aversive interoceptive challenge. Methodology/Principal Findings: Elite adventure racers (n = 10) and healthy volunteers (n = 11) performed a continuous performance task with varying degrees of a non-hypercapnic breathing load while undergoing functional magnetic resonance imaging. The results indicate that (1) non-hypercapnic inspiratory breathing load is an aversive experience associated with a profound activation of a distributed set of brain areas including bilateral insula, dorsolateral prefrontal cortex and anterior cingulated; (2) adventure racers relative to comparison subjects show greater accuracy on the continuous performance task during the aversive interoceptive condition; and (3) adventure racers show an attenuated right insula cortex response during and following the aversive interoceptive condition of non-hypercapnic inspirator

    Steroid receptor coactivator-1 modulates the function of Pomc neurons and energy homeostasis

    Get PDF
    Hypothalamic neurons expressing the anorectic peptide Pro-opiomelanocortin (Pomc) regulate food intake and body weight. Here, we show that Steroid Receptor Coactivator-1 (SRC-1) interacts with a target of leptin receptor activation, phosphorylated STAT3, to potentiate Pomc transcription. Deletion of SRC-1 in Pomc neurons in mice attenuates their depolarization by leptin, decreases Pomc expression and increases food intake leading to high-fat diet-induced obesity. In humans, fifteen rare heterozygous variants in SRC-1 found in severely obese individuals impair leptin-mediated Pomc reporter activity in cells, whilst four variants found in non-obese controls do not. In a knock-in mouse model of a loss of function human variant (SRC-1L1376P), leptin-induced depolarization of Pomc neurons and Pomc expression are significantly reduced, and food intake and body weight are increased. In summary, we demonstrate that SRC-1 modulates the function of hypothalamic Pomc neurons, and suggest that targeting SRC-1 may represent a useful therapeutic strategy for weight loss.Peer reviewe
    corecore