268 research outputs found

    Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation.

    Full text link
    The causes of Late Pleistocene megafaunal extinctions (60,000 to 11,650 years ago, hereafter 60 to 11.65 ka) remain contentious, with major phases coinciding with both human arrival and climate change around the world. The Americas provide a unique opportunity to disentangle these factors as human colonization took place over a narrow time frame (~15 to 14.6 ka) but during contrasting temperature trends across each continent. Unfortunately, limited data sets in South America have so far precluded detailed comparison. We analyze genetic and radiocarbon data from 89 and 71 Patagonian megafaunal bones, respectively, more than doubling the high-quality Pleistocene megafaunal radiocarbon data sets from the region. We identify a narrow megafaunal extinction phase 12,280 ± 110 years ago, some 1 to 3 thousand years after initial human presence in the area. Although humans arrived immediately prior to a cold phase, the Antarctic Cold Reversal stadial, megafaunal extinctions did not occur until the stadial finished and the subsequent warming phase commenced some 1 to 3 thousand years later. The increased resolution provided by the Patagonian material reveals that the sequence of climate and extinction events in North and South America were temporally inverted, but in both cases, megafaunal extinctions did not occur until human presence and climate warming coincided. Overall, metapopulation processes involving subpopulation connectivity on a continental scale appear to have been critical for megafaunal species survival of both climate change and human impacts

    Chordoma: clinical characteristics, management and prognosis of a case series of 25 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adequate surgery still remains the only curative treatment of chordoma. Interesting clinical data on advanced disease with molecularly targeted therapies were reported.</p> <p>Methods</p> <p>We described the clinical outcome of a series of chordoma patients followed at Regina Elena National Cancer Centre of Rome from 2004 to 2008.</p> <p>Results</p> <p>Twenty-five consecutive patients with sacral (11 patients), spine (13 patients), and skull base (1 patient) chordoma went to our observation. Six patients (24%) had primary disease, 14(56%) a recurrent disease, and 5(20%) a metastatic spreading. Surgery was the primary option for treatment in 22 out of 25 patients. Surgical margins were wide in 5 (23%) and intralesional in 17(77%) patients; 3 out of 4 in-house treated patients obtained wide margins. After first surgery, radiotherapy (protons or high-energy photons) were delivered to 3 patients. One out of the 5 patients with wide margins is still without evidence of disease at 20 months from surgery; 2 patients died without evidence of disease after 3 and 36 months from surgery. Sixteen out of 17 (94%) patients with intralesional margins underwent local progression at a median time of 18 months with a 2-year local progression-free survival of 47%. The 5-year metastasis-free survival rate was 78.3%. Seventeen patients with locally advanced and/or metastatic disease expressing platelet-derived growth factor receptor (PDGFR) β were treated with imatinib mesylate. A RECIST stabilization of the disease was the best response observed in all treated cases. Pain relief with reduction in analgesics use was obtained in 6 out of 11 (54%) symptomatic patients. The 5- and 10-year survival rates of the entire series of patients were 76.7 and 59.7%, respectively.</p> <p>Conclusions</p> <p>Despite progress of surgical techniques and the results obtained with targeted therapy, more effort is needed for better disease control. Specific experience of the multidisciplinar therapeutic team is, however, essential to succeed in improving patients' outcome.</p

    In-depth clinical and biological exploration of DNA Damage Immune Response (DDIR) as a biomarker for oxaliplatin use in colorectal cancer

    Get PDF
    PURPOSE: The DNA Damage Immune Response (DDIR) assay was developed in breast cancer (BC) based on biology associated with deficiencies in homologous recombination and Fanconi Anemia (HR/FA) pathways. A positive DDIR call identifies patients likely to respond to platinum-based chemotherapies in breast and oesophageal cancers. In colorectal cancer (CRC) there is currently no biomarker to predict response to oxaliplatin. We tested the ability of the DDIR assay to predict response to oxaliplatin-based chemotherapy in CRC and characterised the biology in DDIR-positive CRC. METHODS: Samples and clinical data were assessed according to DDIR status from patients who received either 5FU or FOLFOX within the FOCUS trial (n=361, stage 4), or neo-adjuvant FOLFOX in the FOxTROT trial (n=97, stage 2/3). Whole transcriptome, mutation and immunohistochemistry data of these samples were used to interrogate the biology of DDIR in CRC. RESULTS: Contrary to our hypothesis, DDIR negative patients displayed a trend towards improved outcome for oxaliplatin-based chemotherapy compared to DDIR positive patients. DDIR positivity was associated with Microsatellite Instability (MSI) and Colorectal Molecular Subtype 1 (CMS1). Refinement of the DDIR signature, based on overlapping interferon-related chemokine signalling associated with DDIR positivity across CRC and BC cohorts, further confirmed that the DDIR assay did not have predictive value for oxaliplatin-based chemotherapy in CRC. CONCLUSIONS: DDIR positivity does not predict improved response following oxaliplatin treatment in CRC. However, data presented here suggests the potential of the DDIR assay in identifying immune-rich tumours that may benefit from immune checkpoint blockade, beyond current use of MSI status

    Predictors of colorectal cancer screening in diverse primary care practices

    Get PDF
    BACKGROUND: To explain why rates of colorectal cancer (CRC) screening including fecal occult blood testing (FOBT), flexible sigmoidoscopy (FS), colonoscopy (CS), and barium enema (BE), are low, this study assessed determinants of CRC screening from medical records. METHODS: Data were abstracted from patients aged ≥64 years selected from each clinician from 30 diverse primary care practices (n = 981). Measurements included the rates of annual FOBT, ever receiving FOBT, ever receiving FS/CS/BE under a combination variable, endoscopy/barium enema (EBE). RESULTS: Over five years, 8% had received annual FOBT, 53% had ever received FOBT and 22% had ever received EBE. Annual FOBT was negatively associated with female gender, odds ratio (OR) = .23; 95% confidence interval = .12–.44 and positively associated with routinely receiving influenza vaccine, OR = 2.55 (1.45–4.47); and more office visits: 3 to <5 visits/year, OR = 2.78 (1.41–5.51), and ≥5 visits/year, OR = 3.35 (1.52-7.42). Ever receiving EBE was negatively associated with age ≥75 years, OR = .66 (.46–.95); being widowed, OR = .59 (.38–.92); and positively associated with more office visits: 3 to <5 visits/year, OR = 1.83 (1.18–2.82) and ≥5 visits/year, OR = 2.01 (1.14–3.55). CONCLUSION: Overall CRC screening rates were low, but were related to the number of primary care office visits. FOBT was related to immunization status, suggesting the possible benefit of linking these preventive services

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    T cell adhesion and cytolysis of pancreatic cancer cells: a role for E-cadherin in immunotherapy?

    Get PDF
    Pancreatic cancer is an aggressive and potent disease, which is largely resistant to conventional forms of treatment. However, the discovery of antigens associated with pancreatic cancer cells has recently suggested the possibility that immunotherapy might become a specific and effective therapeutic option. T cells within many epithelia, including those of the pancreas, are known to express the αEβ7-integrin adhesion molecule, CD103. The only characterised ligand for CD103 is E-cadherin, an epithelial adhesion molecule which exhibits reduced expression in pancreatic cancer. In our study, CD103 was found to be expressed only by activated T cells following exposure to tumour necrosis factor beta 1, a factor produced by many cancer cells. Significantly, the expression of this integrin was restricted mainly to class I major histocompatibility complex-restricted CD8+ T cells. The human pancreatic cancer cell line Panc-1 was transfected with human E-cadherin in order to generate E-cadherin negative (wild type) and positive (transfected) sub-lines. Using a sensitive flow cytometric adhesion assay it was found that the expression of both CD103 (on T cells) and E-cadherin (on cancer cells) was essential for efficient adhesion of activated T cells to pancreatic cancer cells. This adhesion process was inhibited by the addition of antibodies specific for CD103, thereby demonstrating the importance of the CD103→E-cadherin interaction for T-cell adhesion. Using a 51Cr-release cytotoxicity assay it was found that CD103 expressing T cells lysed E-cadherin expressing Panc-1 target cells following T cell receptor stimulation; addition of antibodies specific for CD103 significantly reduced this lysis. Furthermore, absence of either CD103 from the T cells or E-cadherin expression from the cancer cells resulted in a significant reduction in cancer cell lysis. Therefore, potentially antigenic pancreatic cancer cells could evade a local anti-cancer immune response in vivo as a consequence of their loss of E-cadherin expression; this phenotypic change may also favour metastasis by reducing homotypic adhesion between adjacent cancer cells. We conclude that effective immunotherapy is likely to require upregulation of E-cadherin expression by pancreatic cancer cells or the development of cytotoxic immune cells that are less dependent on this adhesion molecule for efficient effecter function

    Subtle effects of environmental stress observed in the early life stages of the Common frog, Rana temporaria

    Get PDF
    Worldwide amphibian populations are declining due to habitat loss, disease and pollution. Vulnerability to environmental contaminants such as pesticides will be dependent on the species, the sensitivity of the ontogenic life stage and hence the timing of exposure and the exposure pathway. Herein we investigated the biochemical tissue ‘fingerprint’ in spawn and early-stage tadpoles of the Common frog, Rana temporaria, using attenuated total reflection- Fourier-transform infrared (ATR-FTIR) spectroscopy with the objective of observing differences in the biochemical constituents of the respective amphibian tissues due to varying water quality in urban and agricultural ponds. Our results demonstrate that levels of stress (marked by biochemical constituents such as glycogen that are involved in compensatory metabolic mechanisms) can be observed in tadpoles present in the pond most impacted by pollution (nutrients and pesticides), but large annual variability masked any inter-site differences in the frog spawn. ATR-FTIR spectroscopy is capable of detecting differences in tadpoles that are present in selected ponds with different levels of environmental perturbation and thus serves as a rapid and cost effective tool in assessing stress-related effects of pollution in a vulnerable class of organism

    The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate <sup>3</sup>H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation.</p> <p>Methods</p> <p>Melanoma cells were gamma- and/or UV-irradiated. <sup>3</sup>H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression.</p> <p>Results</p> <p>UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100.</p> <p>Conclusion</p> <p>These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells.</p

    Reduced auditory steady state responses in autism spectrum disorder

    Get PDF
    Background Auditory steady state responses (ASSRs) are elicited by clicktrains or amplitude-modulated tones, which entrain auditory cortex at their specific modulation rate. Previous research has reported reductions in ASSRs at 40 Hz for autism spectrum disorder (ASD) participants and first-degree relatives of people diagnosed with ASD (Mol Autism. 2011;2:11, Biol Psychiatry. 2007;62:192–197). Methods Using a 1.5 s-long auditory clicktrain stimulus, designed to elicit an ASSR at 40 Hz, this study attempted to replicate and extend these findings. Magnetencephalography (MEG) data were collected from 18 adolescent ASD participants and 18 typically developing controls. Results The ASSR localised to bilateral primary auditory regions. Regions of interest were thus defined in left and right primary auditory cortex (A1). While the transient gamma-band response (tGBR) from 0-0.1 s following presentation of the clicktrain stimulus was not different between groups, for either left or right A1, the ASD group had reduced oscillatory power at 40 Hz from 0.5 to 1.5 s post-stimulus onset, for both left and right A1. Additionally, the ASD group had reduced inter-trial coherence (phase consistency over trials) at 40 Hz from 0.64-0.82 s for right A1 and 1.04-1.22 s for left A1. Limitations In this study, we did not conduct a clinical autism assessment (e.g. the ADOS), and therefore, it remains unclear whether ASSR power and/or ITC are associated with the clinical symptoms of ASD. Conclusion Overall, our results support a specific reduction in ASSR oscillatory power and inter-trial coherence in ASD, rather than a generalised deficit in gamma-band responses. We argue that this could reflect a developmentally relevant reduction in non-linear neural processing
    corecore