405 research outputs found

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Glucosylsphingosine Is a Highly Sensitive and Specific Biomarker for Primary Diagnostic and Follow-Up Monitoring in Gaucher Disease in a Non-Jewish, Caucasian Cohort of Gaucher Disease Patients

    Get PDF
    Gaucher disease (GD) is the most common lysosomal storage disorder (LSD). Based on a deficient β-glucocerebrosidase it leads to an accumulation of glucosylceramide. Standard diagnostic procedures include measurement of enzyme activity, genetic testing as well as analysis of chitotriosidase and CCL18/PARC as biomarkers. Even though chitotriosidase is the most well-established biomarker in GD, it is not specific for GD. Furthermore, it may be false negative in a significant percentage of GD patients due to mutation. Additionally, chitotriosidase reflects the changes in the course of the disease belatedly. This further enhances the need for a reliable biomarker, especially for the monitoring of the disease and the impact of potential treatments.Here, we evaluated the sensitivity and specificity of the previously reported biomarker Glucosylsphingosine with regard to different control groups (healthy control vs. GD carriers vs. other LSDs).Only GD patients displayed elevated levels of Glucosylsphingosine higher than 12 ng/ml whereas the comparison controls groups revealed concentrations below the pathological cut-off, verifying the specificity of Glucosylsphingosine as a biomarker for GD. In addition, we evaluated the biomarker before and during enzyme replacement therapy (ERT) in 19 patients, demonstrating a decrease in Glucosylsphingosine over time with the most pronounced reduction within the first 6 months of ERT. Furthermore, our data reveals a correlation between the medical consequence of specific mutations and Glucosylsphingosine.In summary, Glucosylsphingosine is a very promising, reliable and specific biomarker for GD

    Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations

    Get PDF
    We study the effect of global and local dielectric variations on the polarization conversion rps response of ordered nickel nanowires embedded in an alumina matrix. When considering local changes, we observe a non-monotonous behavior of the rps, its intensity unusually modified far beyond to what it is expected for a monotonous change of the whole refractive index of the embedding medium. This is related to the local redistribution of the electromagnetic field when a localized surface plasmon is excited. This finding may be employed to develop and improve new biosensing magnetoplasmonic devices

    Assessing the Role of CD103 in Immunity to an Intestinal Helminth Parasite

    Get PDF
    In the intestine, the integrin CD103 is expressed on a subset of T regulatory (T(reg)) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103(+) DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c(+) DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103(-/-)) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103(-/-) mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4(+)CD25(+)Foxp3(+) T(reg) cells in the mLN or LP.These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or T(reg) recruitment or retention within the large intestine
    corecore