55 research outputs found

    Cryptic Diversity in Indo-Pacific Coral-Reef Fishes Revealed by DNA-Barcoding Provides New Support to the Centre-of-Overlap Hypothesis

    Get PDF
    Diversity in coral reef fishes is not evenly distributed and tends to accumulate in the Indo-Malay-Philippines Archipelago (IMPA). The comprehension of the mechanisms that initiated this pattern is in its infancy despite its importance for the conservation of coral reefs. Considering the IMPA either as an area of overlap or a cradle of marine biodiversity, the hypotheses proposed to account for this pattern rely on extant knowledge about taxonomy and species range distribution. The recent large-scale use of standard molecular data (DNA barcoding), however, has revealed the importance of taking into account cryptic diversity when assessing tropical biodiversity. We DNA barcoded 2276 specimens belonging to 668 coral reef fish species through a collaborative effort conducted concomitantly in both Indian and Pacific oceans to appraise the importance of cryptic diversity in species with an Indo-Pacific distribution range. Of the 141 species sampled on each side of the IMPA, 62 presented no spatial structure whereas 67 exhibited divergent lineages on each side of the IMPA with K2P distances ranging between 1% and 12%, and 12 presented several lineages with K2P distances ranging between 3% and 22%. Thus, from this initial pool of 141 nominal species with Indo-Pacific distribution, 79 dissolved into 165 biological units among which 162 were found in a single ocean. This result is consistent with the view that the IMPA accumulates diversity as a consequence of its geological history, its location on the junction between the two main tropical oceans and the presence of a land bridge during glacial times in the IMPA that fostered allopatric divergence and secondary contacts between the Indian and Pacific oceans

    Oyster Reefs as Natural Breakwaters Mitigate Shoreline Loss and Facilitate Fisheries

    Get PDF
    Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards “living shoreline” approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m−2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this compromised the shoreline protection capacity, the observed habitat value demonstrates ecological justification for future, more robust shoreline protection projects

    Passerine Exposure to Primarily PCDFs and PCDDs in the River Floodplains Near Midland, Michigan, USA

    Get PDF
    House wren (Troglodytes aedon), tree swallow (Tachycineta bicolor), and eastern bluebird (Sialia sialis) tissues collected in study areas (SAs) downstream of Midland, Michigan (USA) contained concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) greater than in upstream reference areas (RAs) in the region. The sum of concentrations of PCDD/DFs (ΣPCDD/DFs) in eggs of house wrens and eastern bluebirds from SAs were 4- to 22-fold greater compared to those from RAs, whereas concentrations in tree swallow eggs were similar among areas. Mean concentrations of ΣPCDD/DFs and sum 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (ΣTEQsWHO-Avian), based on 1998 WHO avian toxic equivalency factors, in house wren and eastern bluebird eggs ranged from 860 (430) to 1500 (910) ng/kg wet weight (ww) and 470 (150) to 1100 (510) ng/kg ww, respectively, at the most contaminated study areas along the Tittabawassee River, whereas mean concentrations in tree swallow eggs ranged from 280 (100) to 760 (280) ng/kg ww among all locations. Concentrations of ΣPCDD/DFs in nestlings of all studied species at SAs were 3- to 50-fold greater compared to RAs. Mean house wren, tree swallow, and eastern bluebird nestling concentrations of ΣPCDD/DFs and ΣTEQsWHO-Avian ranged from 350 (140) to 610 (300) ng/kg ww, 360 (240) to 1100 (860) ng/kg ww, and 330 (100) to 1200 (690) ng/kg ww, respectively, at SAs along the Tittabawassee River. Concentrations of ΣTEQsWHO-Avian were positively correlated with ΣPCDD/DF concentrations in both eggs and nestlings of all species studied. Profiles of relative concentrations of individual congeners were dominated by furan congeners (69–84%), primarily 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,7,8-pentachlorodibenzofuran, for all species at SAs on the Tittabawassee and Saginaw rivers but were dominated by dioxin congeners at upstream RAs

    Unraveling a 146 Years Old Taxonomic Puzzle: Validation of Malabar Snakehead, Species-Status and Its Relevance for Channid Systematics and Evolution

    Get PDF
    The current distribution of C. diplogramma and C. micropeltes is best explained by vicariance. The significant variation in the key taxonomic characters and the results of the molecular marker analysis points towards an allopatric speciation event or vicariant divergence from a common ancestor, which molecular data suggests to have occurred as early as 21.76 million years ago. The resurrection of C. diplogramma from the synonymy of C. micropeltes has hence been confirmed 146 years after its initial description and 134 years after it was synonymised, establishing it is an endemic species of peninsular India and prioritizing its conservation value

    Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities

    Get PDF
    BACKGROUND: Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. METHODOLOGY/PRINCIPAL FINDINGS: Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. CONCLUSIONS/SIGNIFICANCE: Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable

    Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Get PDF
    Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems
    corecore