22 research outputs found

    Modelling fast forms of visual neural plasticity using a modified second-order motion energy model

    Get PDF
    The Adelson-Bergen motion energy sensor is well established as the leading model of low-level visual motion sensing in human vision. However, the standard model cannot predict adaptation effects in motion perception. A previous paper Pavan et al.(Journal of Vision 10:1-17, 2013) presented an extension to the model which uses a first-order RC gain-control circuit (leaky integrator) to implement adaptation effects which can span many seconds, and showed that the extended model's output is consistent with psychophysical data on the classic motion after-effect. Recent psychophysical research has reported adaptation over much shorter time periods, spanning just a few hundred milliseconds. The present paper further extends the sensor model to implement rapid adaptation, by adding a second-order RC circuit which causes the sensor to require a finite amount of time to react to a sudden change in stimulation. The output of the new sensor accounts accurately for psychophysical data on rapid forms of facilitation (rapid visual motion priming, rVMP) and suppression (rapid motion after-effect, rMAE). Changes in natural scene content occur over multiple time scales, and multi-stage leaky integrators of the kind proposed here offer a computational scheme for modelling adaptation over multiple time scales. © 2014 Springer Science+Business Media New York

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD

    Get PDF
    LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented

    Overview of the medium and high frequency telescopes of the LiteBIRD space mission

    Get PDF
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD

    LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

    Get PDF
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes

    The Influence of Cast Shadows on the Detection of Three-Dimensional Curved Contour Structure

    No full text
    Cast shadows have been shown to provide an effective ordinal cue to the depth position of objects. In the present study, two experiments investigated the effectiveness of cast shadows in facilitating the detection of spatial contours embedded in a field of randomly placed elements. In Experiment 1, the separation between the cast shadow and the contour was systematically increased to effectively signal different contour depth positions (relative to background elements), and this was repeated for patterns in which the lighting direction was above and from below. Increasing the shadow separation improved contour detection performance, but the degree to which sensitivity changed was dependent on the lighting direction. Patterns in which the light was from above were better detected than patterns in which the lighting direction was from below. This finding is consistent with the visual system assuming a “light-from-above rule” when processing cast shadows. In Experiment 2, we examined the degree to which changing the shape of the cast shadow (by randomly jittering the position of local cast shadow elements) affected the ability of the visual system to rely on the cast shadow to cue the depth position of the contour. Consistent with a coarse scale analysis, we find that cast shadows remained an effective depth cue even at large degrees of element jitter. Our findings demonstrate that cast shadows provide an effective means of signaling depth, which aids the process of contour integration, and this process is largely tolerant of local variations in lighting direction

    Modelling adaptation to directional motion using the Adelson-Bergen energy sensor

    Get PDF
    The motion energy sensor has been shown to account for a wide range of physiological and psychophysical results in motion detection and discrimination studies. It has become established as the standard computational model for retinal movement sensing in the human visual system. Adaptation effects have been extensively studied in the psychophysical literature on motion perception, and play a crucial role in theoretical debates, but the current implementation of the energy sensor does not provide directly for modelling adaptation-induced changes in output. We describe an extension of the model to incorporate changes in output due to adaptation. The extended model first computes a space-time representation of the output to a given stimulus, and then a RC gain-control circuit ("leaky integrator") is applied to the time-dependent output. The output of the extended model shows effects which mirror those observed in psychophysical studies of motion adaptation: a decline in sensor output during stimulation, and changes in the relative of outputs of different sensors following this adaptation

    Climate Variability and Rural Livelihood Security : Impacts and Implications

    No full text
    In a typical Nigerian village, the majority of the population comprises old people who are mostly economically unproductive due to reduced or loss of physical strength brought about by ageing and ill health. Many of these rural old people still work, and do so outside the formal sector, and are particularly susceptible to the effects of climate variability and change. Few studies have reported on climate change and the rural aged and there is a research gap as regards rural elderly peoples’ perception of climate variability impact on them. Since little is known about their perception of climate variability impacts and implications on the rural aged especially in relation to their livelihood activities in Sub-Saharan Africa, this chapter therefore examined the impact of climate variability on the livelihood security of the rural aged in different ecological zones of Nigeria. Both qualitative and quantitative methods were used for data collection. Qualitative data were obtained through interviews with four aged and four aged women selected purposively in each rural community and analyzed using Content Analysis Method. Quantitative data were obtained through structured questionnaire administered to an aged male and an aged female population available in selected houses (the aged are people 60 years and over in age) in selected rural communities in selected ecological zones of Nigeria. Where there was no combination of the two (aged men and aged women), either of the two was also sufficient. It was discovered that the ageds’ experiences of climate variability impact relate to the prevailing climate variability characteristic of each ecological zones. The impact on their livelihood in these zones is seen in terms of livestock death, lack of pastures for herds, scarcity of water, pest invasion, delayed planting crop failure, need for irrigation, water logging, drowning of small animals, human and animal illness. This means that planning decisions related to climate change issues should take cognizance of the views of the aged populations especially of those residing in rural areas as they are the most affected by the impact
    corecore