12 research outputs found

    Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13

    Get PDF
    Abstract Background In this study we examined the role of Siglec-F, a receptor highly expressed on eosinophils, in contributing to mucus expression, airway remodeling, and Siglec-F ligand expression utilizing Siglec-F deficient mice exposed to chronic allergen challenge. Methods Wild type (WT) and Siglec-F deficient mice were sensitized and challenged chronically with OVA for one month. Levels of airway inflammation (eosinophils), Siglec-F ligand expresion and remodeling (mucus, fibrosis, smooth muscle thickness, extracellular matrix protein deposition) were assessed in lung sections by image analysis and immunohistology. Airway hyperreactivity to methacholine was assessed in intubated and ventilated mice. Results Siglec-F deficient mice challenged with OVA for one month had significantly increased numbers of BAL and peribronchial eosinophils compared to WT mice which was associated with a significant increase in mucus expression as assessed by the number of periodic acid Schiff positive airway epithelial cells. In addition, OVA challenged Siglec-F deficient mice had significantly increased levels of peribronchial fibrosis (total lung collagen, area of peribronchial trichrome staining), as well as increased numbers of peribronchial TGF-β1+ cells, and increased levels of expression of the extracellular matrix protein fibronectin compared to OVA challenged WT mice. Lung sections immunostained with a Siglec-Fc to detect Siglec-F ligand expression demonstrated higher levels of expression of the Siglec-F ligand in the peribronchial region in OVA challenged Siglec-F deficient mice compared to WT mice. WT and Siglec-F deficient mice challenged intranasally with IL-4 or IL-13 had significantly increased levels of airway epithelial Siglec-F ligand expression, whereas this was not observed in WT or Siglec-F deficient mice challenged with TNF-α. There was a significant increase in the thickness of the peribronchial smooth muscle layer in OVA challenged Siglec-F deficient mice, but this was not associated with significant increased airway hyperreactivity compared to WT mice. Conclusions Overall, this study demonstrates an important role for Siglec-F in modulating levels of chronic eosinophilic airway inflammation, peribronchial fibrosis, thickness of the smooth muscle layer, mucus expression, fibronectin, and levels of peribronchial Siglec-F ligands suggesting that Siglec-F may normally function to limit levels of chronic eosinophilic inflammation and remodeling. In addition, IL-4 and IL-13 are important regulators of Siglec-F ligand expression by airway epithelium

    Developmental, malignancy-related, and cross-species analysis of eosinophil, mast cell, and basophil Siglec-8 expression

    No full text
    OBJECTIVE: The aim of this study is to determine when during hematopoiesis Siglec-8 gets expressed, whether it is expressed on hematologic malignancies, and if there are other non-human species that express Siglec-8. METHODS: Siglec-8 mRNA and cell surface expression was monitored during in vitro maturation of human eosinophils and mast cells. Flow cytometry was performed on human blood and bone marrow samples, and on blood samples from dogs, baboons, and rhesus and cynomolgus monkeys. RESULTS: Siglec-8 is a late maturation marker. It is detectable on eosinophils and basophils from subjects with chronic eosinophilic leukemia, chronic myelogenous leukemia, and on malignant and non-malignant bone marrow mast cells, as well as the HMC-1.2 cell line. None of the Siglec-8 monoclonal antibodies tested recognized leukocytes from dogs, baboons, and rhesus and cynomolgus monkeys. CONCLUSIONS: Siglec-8-based therapies should not target immature human leukocytes but should recognize mature and malignant eosinophils, mast cells, and basophils. So far, there is no suitable species for preclinical testing of Siglec-8 monoclonal antibodies

    Mechanisms of Siglec-F-Induced Eosinophil Apoptosis: A Role for Caspases but Not for SHP-1, Src Kinases, NADPH Oxidase or Reactive Oxygen

    Get PDF
    BACKGROUND: Siglec-F and Siglec-8 are functional paralog proapoptotic cell surface receptors expressed on mouse and human eosinophils, respectively. Whereas Siglec-8 mediated death involves caspases and/or reactive oxygen species (ROS) generation and mitochondrial injury, very little is known about Siglec-F-mediated signaling and apoptosis. Therefore the objective of the current experiments was to better define apoptosis pathways mediated by Siglec-F and Siglec-8. Given that Siglec-F-induced apoptosis is much less robust than Siglec-8-induced apoptosis, we hypothesized that mechanisms involved in cell death via these receptors would differ. METHODS: Consequences of engagement of Siglec-F on mouse eosinophils were studied by measuring ROS production, and by performing apoptosis assays using eosinophils from normal, hypereosinophilic, NADPH oxidase-deficient, src homology domain-containing protein tyrosine phosphatase (SHP)-1-deficient, and Lyn kinase-deficient mice. Inhibitors of caspase and Src family kinase activity were also used. RESULTS: Engagement of Siglec-F induced mouse eosinophil apoptosis that was modest in magnitude and dependent on caspase activity. There was no detectable ROS generation, or any role for ROS, NADPH oxidase, SHP-1, or Src family kinases in this apoptotic process. CONCLUSIONS: These data suggest that Siglec-F-mediated apoptosis is different in both magnitude and mechanisms when compared to published data on Siglec-8-mediated human eosinophil apoptosis. One likely implication of this work is that models targeting Siglec-F in vivo in mice may not provide identical mechanistic predictions for consequences of Siglec-8 targeting in vivo in humans

    Polymorphisms in the sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) gene are associated with susceptibility to asthma

    No full text
    Sialic acid-binding immunoglobulin-like lectin-8 (Siglec-8) promotes the apoptosis of eosinophils and inhibits FcɛRI-dependent mediator release from mast cells. We investigated the genetic association between sequence variants in Siglec-8 and diagnosis of asthma, total levels of serum IgE (tIgE), and diagnosis of eosinophilic esophagitis (EE) in diverse populations. The effect of sequence variants on Siglec-8 glycan ligand-binding activity was also examined. Significant association with asthma was observed for SNP rs36498 (odds ratios (OR), 0.69, P=8.8 × 10−5) among African Americans and for SNP rs10409962 (Ser/Pro) in the Japanese population (OR, 0.69, P=0.019). Supporting this finding, we observed association between SNP rs36498 and current asthma among Brazilian families (P=0.013). Significant association with tIgE was observed for SNP rs6509541 among African Americans (P=0.016), and replicated among the Brazilian families (P=0.02). In contrast, no association was observed with EE in Caucasians. By using a synthetic polymer decorated with 6′-sulfo-sLex, a known Siglec-8 glycan ligand, we did not find any differences between the ligand-binding activity of HEK293 cells stably transfected with the rs10409962 risk allele or the WT allele. However, our association results suggest that the Siglec8 gene may be a susceptibility locus for asthma
    corecore