66 research outputs found

    Echinoderms have bilateral tendencies

    Get PDF
    Echinoderms take many forms of symmetry. Pentameral symmetry is the major form and the other forms are derived from it. However, the ancestors of echinoderms, which originated from Cambrian period, were believed to be bilaterians. Echinoderm larvae are bilateral during their early development. During embryonic development of starfish and sea urchins, the position and the developmental sequence of each arm are fixed, implying an auxological anterior/posterior axis. Starfish also possess the Hox gene cluster, which controls symmetrical development. Overall, echinoderms are thought to have a bilateral developmental mechanism and process. In this article, we focused on adult starfish behaviors to corroborate its bilateral tendency. We weighed their central disk and each arm to measure the position of the center of gravity. We then studied their turning-over behavior, crawling behavior and fleeing behavior statistically to obtain the center of frequency of each behavior. By joining the center of gravity and each center of frequency, we obtained three behavioral symmetric planes. These behavioral bilateral tendencies might be related to the A/P axis during the embryonic development of the starfish. It is very likely that the adult starfish is, to some extent, bilaterian because it displays some bilateral propensity and has a definite behavioral symmetric plane. The remainder of bilateral symmetry may have benefited echinoderms during their evolution from the Cambrian period to the present

    Elevational Gradients in Bird Diversity in the Eastern Himalaya: An Evaluation of Distribution Patterns and Their Underlying Mechanisms

    Get PDF
    BACKGROUND: Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive. METHODS AND PRINCIPAL FINDINGS: We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world's tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport's rule for the birds of Sikkim region of the Himalaya. CONCLUSIONS AND SIGNIFICANCE: This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention

    Population-Level Associations between Preschool Vulnerability and Grade-Four Basic Skills

    Get PDF
    Background: This is a predictive validity study examining the extent to which developmental vulnerability at kindergarten entry (as measured by the Early Development Instrument, EDI) is associated with children’s basic skills in 4th grade (as measured by the Foundation Skills Assessment, FSA). Methodology/Principal Findings: Relative risk analysis was performed on a large database linking individual-level EDI ratings to the scores the same children obtained on a provincial assessment of academic skills (FSA – Foundation Skills Assessment) four years later. We found that early vulnerability in kindergarten is associated with the basic skills that underlie populations of children’s academic achievement in reading, writing and math, indicating that the Early Development Instrument permits to predict achievement-related skills four years in advance. Conclusions/Significance: The EDI can be used to predict children’s educational trends at the population level and can help select early prevention and intervention programs targeting pre-school populations at minimum cost

    Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While manually-assisted body-weight supported treadmill training (BWSTT) has revealed improved locomotor function in persons with post-stroke hemiparesis, outcomes are inconsistent and it is very labor intensive. Thus an alternate treatment approach is desirable. Objectives of this pilot study were to: 1) compare the efficacy of body-weight supported treadmill training (BWSTT) combined with the Lokomat robotic gait orthosis versus manually-assisted BWSTT for locomotor training post-stroke, and 2) assess effects of fast versus slow treadmill training speed.</p> <p>Methods</p> <p>Sixteen volunteers with chronic hemiparetic gait (0.62 ± 0.30 m/s) post-stroke were randomly allocated to Lokomat (n = 8) or manual-BWSTT (n = 8) 3×/wk for 4 weeks. Groups were also stratified by fast (mean 0.92 ± 0.15 m/s) or slow (0.58 ± 0.12 m/s) training speeds. The primary outcomes were self-selected overground walking speed and paretic step length ratio. Secondary outcomes included: fast overground walking speed, 6-minute walk test, and a battery of clinical measures.</p> <p>Results</p> <p>No significant differences in primary outcomes were revealed between Lokomat and manual groups as a result of training. However, within the Lokomat group, self-selected walk speed, paretic step length ratio, and four of the six secondary measures improved (<it>p </it>= 0.04–0.05, effect sizes = 0.19–0.60). Within the manual group, only balance scores improved (<it>p </it>= 0.02, effect size = 0.57). Group differences between fast and slow training groups were not revealed (<it>p </it>≥ 0.28).</p> <p>Conclusion</p> <p>Results suggest that Lokomat training may have advantages over manual-BWSTT following a modest intervention dose in chronic hemiparetic persons and further, that our training speeds produce similar gait improvements. Suggestions for a larger randomized controlled trial with optimal study parameters are provided.</p

    Do Rapoport's Rule, Mid-Domain Effect or Environmental Factors Predict Latitudinal Range Size Patterns of Terrestrial Mammals in China?

    Get PDF
    BACKGROUND: Explaining species range size pattern is a central issue in biogeography and macroecology. Although several hypotheses have been proposed, the causes and processes underlying range size patterns are still not clearly understood. In this study, we documented the latitudinal mean range size patterns of terrestrial mammals in China, and evaluated whether that pattern conformed to the predictions of the Rapoport's rule several analytical methods. We also assessed the influence of the mid-domain effect (MDE) and environmental factors on the documented range size gradient. METHODOLOGY/PRINCIPAL FINDINGS: Distributions of 515 terrestrial mammals and data on nine environmental variables were compiled. We calculated mean range size of the species in each 5° latitudinal band, and created a range size map on a 100 km×100 km quadrat system. We evaluated Rapoport's rule according to Steven's, mid-point, Pagel's and cross-species methods. The effect of the MDE was tested based on a Monte Carlo simulation and linear regression. We used stepwise generalized linear models and correlation analyses to detect the impacts of mean climate condition, climate variability, ambient energy and topography on range size. The results of the Steven's, Pagel's and cross-species methods supported Rapoport's rule, whereas the mid-point method resulted in a hump-shaped pattern. Our range size map showed that larger mean latitudinal extents emerged in the mid-latitudes. We found that the MDE explained 80.2% of the range size variation, whereas, environmental factors accounted for <30% of that variation. CONCLUSIONS/SIGNIFICANCE: Latitudinal range size pattern of terrestrial mammals in China supported Rapoport's rule, though the extent of that support was strongly influenced by methodology. The critical factor underlying the observed gradient was the MDE, and the effects of climate, energy and topography were limited. The mean climate condition hypothesis, climate variability hypothesis, ambient energy hypotheses and topographical heterogeneity hypotheses were not supported

    Elevational Patterns of Species Richness, Range and Body Size for Spiny Frogs

    Get PDF
    Quantifying spatial patterns of species richness is a core problem in biodiversity theory. Spiny frogs of the subfamily Painae (Anura: Dicroglossidae) are widespread, but endemic to Asia. Using spiny frog distribution and body size data, and a digital elevation model data set we explored altitudinal patterns of spiny frog richness and quantified the effect of area on the richness pattern over a large altitudinal gradient from 0–5000 m a.s.l. We also tested two hypotheses: (i) the Rapoport's altitudinal effect is valid for the Painae, and (ii) Bergmann's clines are present in spiny frogs. The species richness of Painae across four different altitudinal band widths (100 m, 200 m, 300 m and 400 m) all showed hump-shaped patterns along altitudinal gradient. The altitudinal changes in species richness of the Paini and Quasipaini tribes further confirmed this finding, while the peak of Quasipaini species richness occurred at lower elevations than the maxima of Paini. The area did not explain a significant amount of variation in total, nor Paini species richness, but it did explain variation in Quasipaini. Five distinct groups across altitudinal gradient were found. Species altitudinal ranges did not expand with an increase in the midpoints of altitudinal ranges. A significant negative correlation between body size and elevation was exhibited. Our findings demonstrate that Rapoport's altitudinal rule is not a compulsory attribute of spiny frogs and also suggest that Bergmann's rule is not generally applicable to amphibians. The study highlights a need to explore the underlying mechanisms of species richness patterns, particularly for amphibians in macroecology

    Elevational Distribution and Extinction Risk in Birds

    Get PDF
    Mountainous regions are hotspots of terrestrial biodiversity. Unlike islands, which have been the focus of extensive research on extinction dynamics, fewer studies have examined mountain ranges even though they face increasing threats from human pressures – notably habitat conversion and climate change. Limits to the taxonomic and geographical extent and resolution of previously available information have precluded an explicit assessment of the relative role of elevational distribution in determining extinction risk. We use a new global species-level avian database to quantify the influence of elevational distribution (range, maximum and midpoint) on extinction risk in birds at the global scale. We also tested this relationship within biogeographic realms, higher taxonomic levels, and across phylogenetic contrasts. Potential confounding variables (i.e. phylogenetic, distributional, morphological, life history and niche breadth) were also tested and controlled for. We show that the three measures of elevational distribution are strong negative predictors of avian extinction risk, with elevational range comparable and complementary to that of geographical range size. Extinction risk was also found to be positively associated with body weight, development and adult survival, but negatively associated with reproduction and niche breadth. The robust and consistent findings from this study demonstrate the importance of elevational distribution as a key driver of variation in extinction dynamics in birds. Our results also highlight elevational distribution as a missing criterion in current schemes for quantifying extinction risk and setting species conservation priorities in birds. Further research is recommended to test for generality across non-avian taxa, which will require an advance in our knowledge of species’ current elevational ranges and increased efforts to digitise and centralise such data

    Predicting plant diversity patterns in Madagascar : understanding the effects of climate and land cover change in a biodiversity hotspot

    Get PDF
    Climate and land cover change are driving a major reorganization of terrestrial biotic communities in tropical ecosystems. In an effort to understand how biodiversity patterns in the tropics will respond to individual and combined effects of these two drivers of environmental change, we use species distribution models (SDMs) calibrated for recent climate and land cover variables and projected to future scenarios to predict changes in diversity patterns in Madagascar. We collected occurrence records for 828 plant genera and 2186 plant species. We developed three scenarios, (i.e., climate only, land cover only and combined climate-land cover) based on recent and future climate and land cover variables. We used this modelling framework to investigate how the impacts of changes to climate and land cover influenced biodiversity across ecoregions and elevation bands. There were large-scale climate- and land cover-driven changes in plant biodiversity across Madagascar, including both losses and gains in diversity. The sharpest declines in biodiversity were projected for the eastern escarpment and high elevation ecosystems. Sharp declines in diversity were driven by the combined climate-land cover scenarios; however, there were subtle, region-specific differences in model outputs for each scenario, where certain regions experienced relatively higher species loss under climate or land cover only models. We strongly caution that predicted future gains in plant diversity will depend on the development and maintenance of dispersal pathways that connect current and future suitable habitats. The forecast for Madagascar's plant diversity in the face of future environmental change is worrying: regional diversity will continue to decrease in response to the combined effects of climate and land cover change, with habitats such as ericoid thickets and eastern lowland and sub-humid forests particularly vulnerable into the future
    corecore