18 research outputs found

    Association between full service and fast food restaurant density, dietary intake and overweight/obesity among adults in Delhi, India

    Get PDF
    Abstract Background The food environment has been implicated as an underlying contributor to the global obesity epidemic. However, few studies have evaluated the relationship between the food environment, dietary intake, and overweight/obesity in low- and middle-income countries (LMICs). The aim of this study was to assess the association of full service and fast food restaurant density with dietary intake and overweight/obesity in Delhi, India. Methods Data are from a cross-sectional, population-based study conducted in Delhi. Using multilevel cluster random sampling, 5364 participants were selected from 134 census enumeration blocks (CEBs). Geographic information system data were available for 131 CEBs (n = 5264) from a field survey conducted using hand-held global positioning system devices. The number of full service and fast food restaurants within a 1-km buffer of CEBs was recorded by trained staff using ArcGIS software, and participants were assigned to tertiles of full service and fast food restaurant density based on their resident CEB. Height and weight were measured using standardized procedures and overweight/obesity was defined as a BMI ≥25 kg/m2. Results The most common full service and fast food restaurants were Indian savory restaurants (57.2%) and Indian sweet shops (25.8%). Only 14.1% of full service and fast food restaurants were Western style. After adjustment for age, household income, education, and tobacco and alcohol use, participants in the highest tertile of full service and fast food restaurant density were less likely to consume fruit and more likely to consume refined grains compared to participants in the lowest tertile (both p < 0.05). In unadjusted logistic regression models, participants in the highest versus lowest tertile of full service and fast food restaurant density were significantly more likely to be overweight/obese: odds ratio (95% confidence interval), 1.44 (1.24, 1.67). After adjustment for age, household income, and education, the effect was attenuated: 1.08 (0.92, 1.26). Results were consistent with further adjustment for tobacco and alcohol use, moderate physical activity, and owning a bicycle or motorized vehicle. Conclusions Most full service and fast food restaurants were Indian, suggesting that the nutrition transition in this megacity may be better characterized by the large number of unhealthy Indian food outlets rather than the Western food outlets. Full service and fast food restaurant density in the residence area of adults in Delhi, India, was associated with poor dietary intake. It was also positively associated with overweight/obesity, but this was largely explained by socioeconomic status. Further research is needed exploring these associations prospectively and in other LMICs

    Selective Pressures to Maintain Attachment Site Specificity of Integrative and Conjugative Elements

    Get PDF
    Integrative and conjugative elements (ICEs) are widespread mobile genetic elements that are usually found integrated in bacterial chromosomes. They are important agents of evolution and contribute to the acquisition of new traits, including antibiotic resistances. ICEs can excise from the chromosome and transfer to recipients by conjugation. Many ICEs are site-specific in that they integrate preferentially into a primary attachment site in the bacterial genome. Site-specific ICEs can also integrate into secondary locations, particularly if the primary site is absent. However, little is known about the consequences of integration of ICEs into alternative attachment sites or what drives the apparent maintenance and prevalence of the many ICEs that use a single attachment site. Using ICEBs1, a site-specific ICE from Bacillus subtilis that integrates into a tRNA gene, we found that integration into secondary sites was detrimental to both ICEBs1 and the host cell. Excision of ICEBs1 from secondary sites was impaired either partially or completely, limiting the spread of ICEBs1. Furthermore, induction of ICEBs1 gene expression caused a substantial drop in proliferation and cell viability within three hours. This drop was dependent on rolling circle replication of ICEBs1 that was unable to excise from the chromosome. Together, these detrimental effects provide selective pressure against the survival and dissemination of ICEs that have integrated into alternative sites and may explain the maintenance of site-specific integration for many ICEs.United States. Public Health Service (Grant GM050895

    The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis

    Get PDF
    The rok gene of Bacillus subtilis was identified as a negative regulator of competence development. It also controls expression of several genes not related to competence. We found that Rok binds to extended regions of the B. subtilis genome. These regions are characterized by a high A+T content and are known or believed to have been acquired by horizontal gene transfer. Some of the Rok binding regions are in known mobile genetic elements. A deletion of rok resulted in higher excision of one such element, ICEBs1, a conjugative transposon found integrated in the B. subtilis genome. When expressed in the Gram negative E. coli, Rok also associated with A+T-rich DNA and a conserved C-terminal region of Rok contributed to this association. Together with previous work, our findings indicate that Rok is a nucleoid associated protein that serves to help repress expression of A+T-rich genes, many of which appear to have been acquired by horizontal gene transfer. In these ways, Rok appears to be functionally analogous to H-NS, a nucleoid associated protein found in Gram negative bacteria and Lsr2 of high G+C Mycobacteria

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA

    Risk factors mediating the effect of body mass index and waist-to-hip ratio on cardiovascular outcomes: Mendelian randomization analysis

    Get PDF
    Abstract: Background: Higher body mass index (BMI) and waist-to-hip ratio (WHR) increase the risk of cardiovascular disease, but the extent to which this is mediated by blood pressure, diabetes, lipid traits, and smoking is not fully understood. Methods: Using consortia and UK Biobank genetic association summary data from 140,595 to 898,130 participants predominantly of European ancestry, Mendelian randomization mediation analysis was performed to investigate the degree to which systolic blood pressure (SBP), diabetes, lipid traits, and smoking mediated an effect of BMI and WHR on the risk of coronary artery disease (CAD), peripheral artery disease (PAD) and stroke. Results: The odds ratio of CAD per 1-standard deviation increase in genetically predicted BMI was 1.49 (95% CI 1.39 to 1.60). This attenuated to 1.34 (95% CI 1.24 to 1.45) after adjusting for genetically predicted SBP (proportion mediated 27%, 95% CI 3% to 50%), to 1.27 (95% CI 1.17 to 1.37) after adjusting for genetically predicted diabetes (41% mediated, 95% CI 18% to 63%), to 1.47 (95% CI 1.36 to 1.59) after adjusting for genetically predicted lipids (3% mediated, 95% −23% to 29%), and to 1.46 (95% CI 1.34 to 1.58) after adjusting for genetically predicted smoking (6% mediated, 95% CI −20% to 32%). Adjusting for all the mediators together, the estimate attenuated to 1.14 (95% CI 1.04 to 1.26; 66% mediated, 95% CI 42% to 91%). A similar pattern was observed when considering genetically predicted WHR as the exposure, and PAD or stroke as the outcome. Conclusions: Measures to reduce obesity will lower the risk of cardiovascular disease primarily by impacting downstream metabolic risk factors, particularly diabetes and hypertension. Reduction of obesity prevalence alongside control and management of its mediators is likely to be most effective for minimizing the burden of obesity
    corecore