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Abstract 63 

Background: Higher body-mass index (BMI) and waist-to-hip ratio (WHR) increase the risk of 64 

cardiovascular disease, but the extent to which this is mediated by blood pressure, diabetes, lipid 65 

traits and smoking is not fully understood.  66 

Methods: Using consortia and UK Biobank genetic association summary data from 140,595 to 67 

898,130 participants predominantly of European ancestry, Mendelian randomization mediation 68 

analysis was performed to investigate the degree to which systolic blood pressure (SBP), diabetes, 69 

lipid traits and smoking mediated an effect of BMI and WHR on risk of coronary artery disease (CAD), 70 

peripheral artery disease (PAD) and stroke. 71 

Results: The odds ratio of CAD per 1-standard deviation increase in genetically predicted BMI was 72 

1.49 (95% CI 1.39 to 1.60). This attenuated to 1.34 (95% CI 1.24 to 1.45) after adjusting for 73 

genetically predicted SBP (proportion mediated 27%, 95% CI 3% to 50%), to 1.27 (95% CI 1.17 to 74 

1.37) after adjusting for genetically predicted diabetes (41% mediated, 95% CI 18% to 63%), to 1.47 75 

(95% CI 1.36 to 1.59) after adjusting for genetically predicted lipids (3% mediated, 95% -23% to 29%), 76 

and to 1.46 (95% CI 1.34 to 1.58) after adjusting for genetically predicted smoking (6% mediated, 77 

95% CI -20% to 32%). Adjusting for all the mediators together, the estimate attenuated to 1.14 (95% 78 

CI 1.04 to 1.26; 66% mediated, 95% CI 42% to 91%). A similar pattern was observed when 79 

considering genetically predicted WHR as the exposure, and PAD or stroke as the outcome. 80 

Conclusions: Measures to reduce obesity will lower risk of cardiovascular disease primarily by 81 

impacting on downstream metabolic risk factors, particularly diabetes and hypertension. Reduction 82 

of obesity prevalence alongside control and management of its mediators is likely to be most 83 

effective for minimizing the burden of obesity. 84 
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Background 85 

Cardiovascular disease (CVD) is the leading cause of death and disability worldwide(1). Obesity can 86 

contribute towards CVD risk through effects on hyperglycaemia, hypertension, dyslipidaemia, and 87 

smoking behaviour(2-5). The global prevalence of obesity has more than tripled in the last 40 years, 88 

with an even greater rise in incidence amongst children(6). It is estimated that by 2030, 89 

approximately half of the US population will be obese(7). While obesity prevention remains the 90 

priority, there are also treatments available to effectively manage the downstream mediators 91 

through which obesity causes CVD(8-11). Understanding of such pathways is therefore paramount to 92 

reducing cardiovascular risk. 93 

Obesity can be measured by various means. It is defined by the World Health Organisation as a 94 

body-mass index (BMI) of greater than or equal to 30kg/m2 (12), although this cut-off threshold can 95 

vary between different populations. However, BMI is a not a direct measure of adiposity, and is also 96 

correlated with fat-free mass(12). Assessment of obesity using waist-to-hip ratio (WHR) is less 97 

subject to influence from height and muscle mass, and is positively associated with cardiovascular 98 

risk in individuals with a normal BMI(13, 14). Thus, BMI and WHR represent distinct measures of 99 

body fat that may differentially affect risk of CVD outcomes. Conventional observational studies 100 

have shown that the relationship between obesity measures such as BMI and WHR with CVD is 101 

attenuated when adjustment is made for cardiometabolic risk factors such as blood pressure, lipid 102 

traits or measures of glycaemia(15). This has allowed for estimation of the proportion of the effect 103 

of obesity that is mediated through these intermediates(15). However, such observational analysis is 104 

vulnerable to bias from environmental confounding factors and measurement error, both of which 105 

can result in underestimation of the proportion of effect mediated(16, 17). The Mendelian 106 

randomization (MR) approach uses genetic variants as instruments for studying the effect of 107 

modifying an exposure on an outcome, and has now been extended to perform mediation 108 

analyses(16, 18). Such use of genetic variants whose allocation is not affected by environmental 109 

confounding factors means that MR estimates are less vulnerable to confounding from 110 
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environmental factors. Furthermore, use of genetic variants that are associated with the exposure 111 

(BMI or WHR) in large populations including individuals of different ages means that their 112 

association estimates are typically less vulnerable to measurement error or variation related to the 113 

timing of measurement(16).  114 

The increasing availability of large-scale genome-wide association study (GWAS) data has greatly 115 

facilitated MR analyses considering cardiovascular risk factors and outcomes. In this study, we aimed 116 

to use such data within the MR framework to investigate the role of blood pressure, diabetes, 117 

fasting glucose, lipid traits and smoking in mediating the effect of BMI and WHR on coronary artery 118 

disease (CAD), peripheral arterial disease (PAD) and stroke risk.  119 

 120 

Methods 121 

Ethical approval, data availability, code availability and reporting 122 

The data used in this work are publicly available and the studies from which they were obtained are 123 

cited. All these studies obtained relevant participant consent and ethical approval. The results from 124 

the analyses performed in this work are presented in the main manuscript or its supplementary files. 125 

All code used for this work are available upon reasonable request to the corresponding author. This 126 

paper has been reported based on recommendations by the STROBE-MR Guidelines (Research 127 

Checklist)(19). The study protocol and details were not pre-registered.  128 

Data sources 129 

Genetic association estimates for BMI and WHR were obtained from the GIANT Consortium GWAS 130 

meta-analysis of 806 834 and 697 734 European-ancestry individuals respectively(20). Genetic 131 

association estimates for SBP were obtained from a GWAS of 318 417 White British individuals in the 132 

UK Biobank, with correction made for any self-reported anti-hypertensive medication use by adding 133 

10mmHg to the mean SBP measured from two automated recordings that were taken two minutes 134 
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apart at baseline assessment(21). Previous methodological work has supported that the addition of 135 

a constant value to the observed blood pressure in individuals taking antihypertensive medication as 136 

a strategy that optimises statistical power while minimising bias(22). Genetic association estimates 137 

for lifetime smoking (referred to hereon as smoking) were obtained from a GWAS of 462 690 138 

European-ancestry individuals in the UK Biobank(23). A lifetime measure of smoking was created 139 

based on self-reported age at initiation, age at cessation and cigarettes smoked per day(23). Genetic 140 

association estimates for liability to diabetes came from the DIAGRAM Consortium GWAS meta-141 

analysis of 74 124 cases and 824 006 controls, all of European ancestry(24). Genetic association 142 

estimates for plasma fasting glucose were obtained by using PLINK software to carry out a meta-143 

analysis of MAGIC Consortium GWAS summary data from separate analyses of 67 506 men and 73 144 

089 women who were not diabetic(25, 26). Genetic association estimates for fasting serum low-145 

density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides 146 

were obtained from the Global Lipids Genetic Consortium GWAS of 188,577 European-ancestry 147 

individuals(27). Genetic association estimates for CAD were obtained from the 148 

CARDIoGRAMplusC4D Consortium 1000G multi-ethnic GWAS (77% European-ancestry) of 60 801 149 

cases and 123 504 controls(28). Genetic association estimates for PAD were obtained from the 150 

Million Veterans Program multi-ethnic (72% European-ancestry) GWAS of 31 307 cases and 211 753 151 

controls(29). Genetic association estimates for stroke were obtained from the MEGASTROKE multi-152 

ethnic (86% European-ancestry) GWAS of 67 162 cases (of any stroke) and 454 450 controls(30). 153 

Population characteristics and specific trait definitions relating to all these summary genetic 154 

association estimates are available in their original publications. For the analyses performed in this 155 

current work, genetic variants from different studies were aligned by their effect alleles and no 156 

exclusions were made for palindromic variants. Only variants for which genetic association estimates 157 

were available for all the traits being investigated in any given analysis were considered. In order to 158 

maintain consistency in the variants employed as instruments across different analyses, proxies 159 

were not used. 160 
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Instrument selection 161 

To estimate the total effect of BMI and WHR respectively on the considered cardiovascular 162 

outcomes, instruments were selected as single-nucleotide polymorphisms (SNPs) that associated 163 

with BMI or WHR at genome-wide significance (P<5x10-8) and were in pair-wise linkage 164 

disequilibrium (LD) r2<0.001. The percentage variance in BMI and WHR explained by the variants 165 

selected as their respective instruments was estimated as previously described(31). To select 166 

instruments for mediation analysis, all SNPs related to the considered exposure (BMI or WHR) or 167 

mediators at genome-wide significance were pooled and clumped to pairwise LD r2<0.001 based on 168 

the lowest P-value for association with any trait. All clumping was performed using the 169 

TwoSampleMR package in R(32).  170 

Total effects 171 

Random-effects inverse-variance weighted (IVW) MR was used as the main analysis for estimating 172 

the total effects of genetically predicted BMI and genetically predicted WHR respectively on each of 173 

the considered CVD outcomes(33). The contamination-mixture method, weighted median and MR-174 

Egger were used in sensitivity analyses to explore the robustness of the findings to potential 175 

pleiotropic effects of the variants(34-36). The contamination-mixture model makes the assumption 176 

that MR estimates from valid instruments follow a normal distribution that centres on the true 177 

causal effect estimate, while those calculated from invalid instrument variants follow a normal 178 

distribution centred on the null(35). This allows for a likelihood function to be specified and 179 

maximized when allocating each variant to one of the two mixture distributions(35). The weighted 180 

median approach orders the MR estimates from individual variants by their magnitude weighted for 181 

their precision and selects the median as the overall MR estimate, calculating standard error by 182 

bootstrapping(34). MR-Egger regresses the variant-outcome association estimates against the 183 

variant-exposure association estimates, weighted for the precision of the variant-outcome 184 

estimates(36). It gives a valid MR estimate and test for the presence of directional pleiotropy in 185 

scenarios where any direct effect of the variants on the outcome is not correlated to their 186 
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association with the exposure(36). The MendelianRandomization package (version 0.4.2) in R 187 

(version 3.6.3) was used for performing the IVW, contamination-mixture, weighted median MR and 188 

MR-Egger analyses(37). 189 

Mediation analysis 190 

To estimate the direct effect of genetically predicted BMI and genetically predicted WHR on each of 191 

the three considered CVD outcomes that was not being mediated by the investigated intermediary 192 

risk factors, summary data multivariable MR was performed(38-40). Specifically, the orientations of 193 

all genetic association estimates were harmonized and the variant-outcome genetic association 194 

estimates were regressed on the variant-exposure and variant-mediator estimates, weighted for the 195 

precision of the variant-outcome association, with the intercept fixed to zero(40). Using this 196 

approach, adjustment was made for genetically predicted SBP, diabetes, smoking and lipid traits 197 

(LDL-C, HDL-C and triglycerides together) in turn, and finally including all mediators together in a 198 

joint model. In a sensitivity analysis, genetically predicted diabetes was excluded from this joint 199 

model to remove any bias that might be introduced because of its binary nature(41). For analyses 200 

considering genetically predicted fasting glucose in non-diabetics instead of genetically predicted 201 

diabetes, the corresponding genetic association data were substituted. Diabetes and fasting glucose 202 

were not included together in the same model. 203 

Multivariable MR mediation analysis was performed to estimate the proportion of the effect of BMI 204 

and WHR respectively on CAD, PAD and stroke that was mediated through each of  the considered 205 

risk factors, and also all of them together(16). Specifically, the direct effect of genetically predicted 206 

BMI and genetically predicted WHR respectively was divided by their total effect and subtracted 207 

from 1, with standard errors estimated using the propagation of error method(16, 18). 208 
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Independent effects of genetically predicted BMI and WHR  209 

The direct effects of genetically predicted BMI and genetically predicted WHR on the considered 210 

CVD outcomes that are not mediated through each other were measured by including only these 211 

two traits together as exposures in the summary data multivariable MR model described above. 212 

 213 

Results 214 

Total effects 215 

The variants selected as instruments for BMI and WHR explain 5.7% and 3.6% of their variance 216 

respectively. Considering total effects, there was consistent evidence across the IVW, 217 

contamination-mixture, weighted median and MR-Egger methods that both higher genetically 218 

predicted BMI and higher genetically predicted WHR increased CAD, PAD and stroke risk 219 

(Supplementary Figure 1). The confidence intervals of the MR-Egger estimates were wider than for 220 

the other methods, consistent with its lower statistical power(42). The MR-Egger intercept did not 221 

provide evidence to suggest directional pleiotropy in any analysis (P>0.05 in all analyses). In the main 222 

IVW MR analysis, the odds ratio per 1-standard deviation (SD) increase in genetically predicted BMI 223 

(4.81kg/m2) for CAD risk was 1.49 (95% confidence interval [CI] 1.39 to 1.60), for PAD risk was 1.70 224 

(95% CI 1.58 to 1.82), and for stroke risk was 1.22 (95% CI 1.15 to 1.29). For a 1-SD increase in 225 

genetically predicted WHR (0.09), this was 1.54 (95% CI 1.38 to 1.71) for CAD risk, 1.55 (95% CI 1.40 226 

to 1.71) for PAD risk, and 1.30 (95% CI 1.21 to 1.40) for stroke risk. 227 

Mediation analysis 228 

There was attenuation in the associations of genetically predicted BMI and genetically predicted 229 

WHR with the three CVD outcomes after adjusting for genetically predicted SBP, diabetes, lipid traits 230 

(LDL-C, HDL-C and triglycerides together) and smoking, either separately or in the same joint model 231 

(Figure 1). The 49% (95% CI 39% to 60%) increased risk of CAD conferred per 1-SD increase in 232 

genetically predicted BMI attenuated to 34% (95% CI 24% to 45%) after adjusting for genetically 233 
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predicted SBP, to 27% (95% CI 17% to 37%) after adjusting for genetically predicted diabetes, to 47% 234 

(95% CI 36% to 59%) after adjusting for genetically predicted lipids, and to 46% (95% CI 34% to 58%) 235 

after adjusting for genetically predicted smoking. Adjusting for all the mediators together in the 236 

same model, the association attenuated to 14% (95% CI 4% to 26%).  237 

The percentage attenuation in the total effects of genetically predicted BMI and WHR respectively 238 

on the three CVD outcomes after adjusting for the mediators is depicted in Figure 2. For the effect of 239 

genetically predicted BMI on CAD risk, 27% (95% CI 3% to 50%) was mediated by genetically 240 

predicted SBP, 41% (95% 18% to 63%) was mediated by genetically predicted diabetes, 3% (-23% to 241 

29%) was mediated by  genetically predicted lipids, and 6% (95% CI -20% to 32%) was mediated by 242 

genetically predicted smoking. All the mediators together accounted for 66% (95% CI 42% to 91%) of 243 

the total effect of genetically predicted BMI on CAD risk.  244 

A joint model including all considered mediators except genetically predicted diabetes was also 245 

constructed (Supplementary Figure 2). Adjusting together for all the mediators except genetically 246 

predicted diabetes, the association of genetically predicted BMI with CAD risk attenuated from odds 247 

ratio 1.49 (95% CI 1.39 to 1.60) to 1.27 (95% CI 1.16 to 1.40).  248 

There was little change in the association of either genetically predicted BMI or genetically predicted 249 

WHR with risk of the three CVD outcomes after adjusting for genetically predicted fasting glucose in 250 

non-diabetic individuals (Figure 3). 251 

Independent effects of genetically predicted BMI and WHR  252 

Both genetically predicted BMI and genetically predicted WHR had direct effects on CAD, PAD and 253 

stroke after mutual adjustment (Figure 4). The increased CAD risk attributed to a 1-SD higher 254 

genetically predicted BMI attenuated from 49% (95% CI 39% to 60%) to 32% (95% CI 20% to 45%) 255 

after adjusting for genetically predicted WHR, and the increased CAD risk attributed to a 1-SD higher 256 

genetically predicted WHR attenuated from 54% (95% CI 38% to 71%) to 33% (95% CI 18% to 50%) 257 

after adjusting for genetically predicted BMI. 258 
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 259 

Discussion 260 

This study uses large-scale genetic association data within the MR paradigm to investigate the role of 261 

SBP, diabetes, lipid traits and smoking in mediating the effect of BMI and WHR on CAD, PAD and 262 

stroke risk. The results support that the majority of the effects of obesity on CVD are mediated 263 

through these risk factors, with diabetes and blood pressure being the most notable and accounting 264 

for approximately one-third and one-quarter of the effect respectively. In contrast, the analysis of 265 

genetically predicted fasting glucose in non-diabetic individuals did not provide any evidence to 266 

support its role in mediating the effect of obesity on CVD risk. Previous work has supported an effect 267 

of diabetes liability, fasting glucose and glycated haemoglobin on CVD risk(43, 44). Taken together 268 

with our current findings, this suggests that obesity may be affecting CVD risk by increasing diabetes 269 

liability and non-fasting (postprandial) glucose levels. Similarly, while lipid traits are known to affect 270 

CVD risk(45), our current study suggests that obesity is conferring only a small proportion of its 271 

effect on CVD risk through this pathway. Consistent with this, previous work has supported an effect 272 

of BMI on HDL-C and triglyceride levels, but not LDL-C(44). 273 

In our analyses, the sum of the estimated mediating effects of the various risk factors considered 274 

individually was comparable to their total mediating effect estimated when considering them all 275 

together in the same model, consistent with them acting through distinct mechanisms. Including 276 

genetically predicted BMI and genetically predicted WHR in the same model produced evidence 277 

consistent with these traits having direct effects on CVD risk independently of each other. It follows 278 

that rather than analysing BMI or WHR alone, they should be considered together as they capture 279 

different aspects of adiposity. 280 

Our findings have important clinical and public health implications. Behavioural interventions to 281 

reduce obesity can have inadequate long term effects(46), pharmacological treatments may be 282 

limited by unfavourable adverse effect profiles(47), and surgical procedures are often reserved for 283 
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only severe cases(48). While preventing obesity remains the priority, this work supports that the 284 

majority of its cardiovascular consequences may also be managed by effectively controlling its 285 

downstream mediators, most notably diabetes and raised blood pressure, for which effective 286 

pharmacological interventions are available. This has relevance for the more than 640 million 287 

individuals worldwide currently living with obesity(49), and the many more forecasted to become 288 

obese in coming years(50). Such holistic consideration of obesity together with its mediators could 289 

contribute to a shift from the single-disease focus of health systems towards prioritizing multi-290 

morbidity and promoting individual and societal wellness(51).  291 

Our analyses were also suggestive of some possible residual effect of BMI on CVD risk even after 292 

adjusting for all the considered mediating risk factors, consistent with metabolically healthy obesity 293 

still conferring increased CVD risk(52). In contrast, the investigation of WHR was consistent with an 294 

absence of any direct effect on CVD risk after accounting for the all mediating risk factors together, 295 

suggesting that WHR may be entirely influencing CVD through downstream metabolic traits. Taken 296 

together, these results suggest that unless the growing obesity epidemic is effectively tackled, we 297 

risk undoing the large reductions in CVD mortality achieved over past decades(1). Population-based 298 

approaches that decrease obesity by addressing key upstream drivers such as poor diet and physical 299 

inactivity have substantial potential for impact and are also effective for reducing health 300 

inequalities(53, 54). 301 

The results of our current study can be contrasted to those from a large-scale observational analysis 302 

of 1.8 million people across 97 studies(15, 55). This previous work estimated that 46% (95% CI 42% 303 

to 50%) of the excess risk conferred by raised BMI on CAD and 76% (95% CI 65% to 91%) on stroke 304 

were mediated by effects on blood pressure, glucose levels and lipid traits, with blood pressure 305 

being the most important and mediation for stroke being greatest(15). However, the approach and 306 

data used in our current study offers a number of possible improvements. Our work includes a 307 

greater repertoire of risk factors and CVD outcomes than have been considered together 308 
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previously(15, 44), in particular drawing on recently available GWAS summary data to study smoking 309 

and PAD(23, 29). MR analysis uses randomly allocated genetic variants that represent lifelong 310 

cumulative liability to the traits for which they serve as instruments and can therefore help 311 

overcome the environmental confounding that may bias conventional observational studies(16). 312 

Consistent with this, our MR results indicate that these risk factors mediate a greater proportion of 313 

the effect of obesity than suggested by previous conventional observational analyses(15). 314 

Furthermore, our MR estimates are comparable to those obtained in previous MR studies 315 

considering BMI and WHR as exposures and different types of CVD as the outcome(44, 56, 57). 316 

Also of relevance here, we considered genetic liability to diabetes and genetically predicted fasting 317 

glucose in non-diabetic individuals as separate risk factors. Our findings support the concept that 318 

obesity traits confer an increased risk of CVD specifically through liability to diabetes, rather than 319 

variation in fasting glucose levels within the normal physiological range. This is important because 320 

fasting glucose may have a non-linear association with CVD risk(58), only having detrimental effects 321 

beyond a certain point(59).  322 

Our current study also has limitations. The aim of the current work was to investigate the degree to 323 

which cardiometabolic traits mediate the effects of BMI and WHR on CVD outcomes, and our study 324 

did not extend to investigate any possible role of BMI or WHR in mediating the effects of the 325 

considered cardiometabolic traits on CVD risk. The genetic association data used in this work are 326 

drawn from predominantly European populations, and should therefore be interpreted with caution 327 

when extrapolating to other ethnic groups. Diabetes is a binary outcome, and as such our 328 

consideration of genetically predicted diabetes could introduce bias into the mediation analysis 329 

because not all individuals possessing such genetic liability develop diabetes-related traits(41). SBP 330 

was used as a proxy for studying the effects of blood pressure more generally. Given the high degree 331 

of phenotypic and genetic correlation between blood pressure traits(60), this would seem unlikely to 332 

affect the conclusions drawn. A theoretical weakness of the MR approach relates to bias from 333 
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pleiotropic effects of the genetic variants incorporated as instruments for the traits under study, 334 

whereby they may directly affect the outcome through pathways independent of the exposure or 335 

mediators being considered. Although such bias cannot be entirely excluded, it is reassuring that we 336 

obtained similar MR estimates for the total effect of BMI and WHR respectively on the three CVD 337 

outcomes when performing the IVW, contamination-mixture, weighted median and MR-Egger 338 

methods that each make different assumptions concerning the presence of pleiotropic variants(42). 339 

Finally, there is currently no available method for assessing instrument strength within the two-340 

sample multivariable MR setting, and we could therefore not assess potential vulnerability to weak 341 

instrument bias(38).  342 

In conclusion, this work using the MR framework suggests that the majority of the effects of obesity 343 

on CVD risk are mediated through metabolic risk factors, most notably diabetes and blood pressure. 344 

Comprehensive public health measures that target the reduction of obesity prevalence alongside 345 

control and management of its downstream mediators are likely to be most effective for minimizing 346 

the burden of obesity on individuals and health systems alike.   347 

 348 
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Figure legends 553 

Figure 1. Direct effects of genetically predicted body mass index (BMI) and genetically predicted 554 

waist-to-hip ratio (WHR) on coronary artery disease (CAD), peripheral artery disease (PAD) and 555 

stroke, estimated after adjusting for genetic liability to mediators separately and together in the 556 

same model. The y-axis details the genetically predicted mediator(s) for which adjusted was made. 557 

Blood pressure refers to systolic blood pressure. Lipids refers to serum low-density lipoprotein 558 

cholesterol, high-density lipoprotein cholesterol and triglycerides considered together in one model. 559 

CI: confidence interval; OR: odds ratio; SD: standard deviation. 560 

Figure 2. Proportion (as a percentage) of the respective effects of genetically predicted body mass 561 

index (BMI) and genetically predicted waist-to-hip ratio (WHR) on coronary artery disease (CAD), 562 

peripheral artery disease (PAD) and stroke that are mediated through the genetically predicted 563 

risk factors individually and together. The y-axis details the genetically predicted mediator(s) for 564 

which adjustment was made. Blood pressure refers to systolic blood pressure. Lipids refers to serum 565 

low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides considered 566 

together in one model. CI: confidence interval. 567 

Figure 3. Direct effects of body mass index (BMI) and waist-to-hip ratio (WHR) on coronary artery 568 

disease (CAD), peripheral artery disease (PAD) and stroke, estimated after no adjustment and 569 

after adjustment for genetically predicted fasting glucose in non-diabetics. CI: confidence interval; 570 

OR: odds ratio; SD: standard deviation. 571 

Figure 4. Direct effects of genetically predicted body mass index (BMI) and genetically predicted 572 

waist-to-hip ratio (WHR) on coronary artery disease (CAD), peripheral artery disease (PAD) and 573 

stroke, estimated after adjusting for each other. CI: confidence interval; OR: odds ratio; SD: 574 

standard deviation.  575 










