4,230 research outputs found

    Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordData deposition: Data reported in this paper have been deposited in Dryad Digital Repository (doi:10.5061/dryad.km3109k).Host resistance through immune clearance is predicted to favor pathogens that are able to transmit faster and are hence more virulent. Increasing pathogen virulence is, in turn, typically assumed to be mediated by increasing replication rates. However, experiments designed to test how pathogen virulence and replication rates evolve in response to increasing host resistance, as well as the relationship between the two, are rare and lacking for naturally evolving host–pathogen interactions. We inoculated 55 isolates of Mycoplasma gallisepticum, collected over 20 y from outbreak, into house finches (Haemorhous mexicanus) from disease-unexposed populations, which have not evolved protective immunity to M. gallisepticum. We show using 3 different metrics of virulence (body mass loss, symptom severity, and putative mortality rate) that virulence has increased linearly over >150,000 bacterial generations since outbreak (1994 to 2015). By contrast, while replication rates increased from outbreak to the initial spread of resistance (1994 to 2004), no further increases have occurred subsequently (2007 to 2015). Finally, as a consequence, we found that any potential mediating effect of replication rate on virulence evolution was restricted to the period when host resistance was initially increasing in the population. Taken together, our results show that pathogen virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. We hypothesize that the evolution of pathogen virulence can be driven primarily by processes such as immune manipulation after resistance spreads in host populations.Natural Environment Research Council (NERC

    Rapid antagonistic coevolution in an emerging pathogen and its vertebrate host

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Host-pathogen coevolution is assumed to play a key role in eco-evolutionary processes, including epidemiological dynamics and the evolution of sexual reproduction [1-4]. Despite this, direct evidence for host-pathogen coevolution is exceptional [5-7], particularly in vertebrate hosts. Indeed, although vertebrate hosts have been shown to evolve in response to pathogens or vice versa [8-12], there is little evidence for the necessary reciprocal changes in the success of both antagonists over time [13]. Here, we generate a time-shift experiment to demonstrate adaptive, reciprocal changes in North American house finches (Haemorhous mexicanus) and their bacterial pathogen, Mycoplasma gallisepticum [14-16]. Our experimental design is made possible by the existence of disease-exposed and unexposed finch populations, which were known to exhibit equivalent responses to experimental inoculation until the recent spread of genetic resistance in the former [14, 17]. While inoculation with pathogen isolates from epidemic outbreak caused comparable sub-lethal eye-swelling in hosts from exposed (hereafter adapted) and unexposed (hereafter ancestral) populations, inoculation with isolates sampled after the spread of resistance were threefold more likely to cause lethal symptoms in hosts from ancestral populations. Similarly, the probability that pathogens successfully established an infection in the primary host and, before inducing death, transmitted to an uninfected sentinel was highest when recent isolates were inoculated in hosts from ancestral populations and lowest when early isolates were inoculated in hosts from adapted populations. Our results demonstrate antagonistic host-pathogen coevolution, with hosts and pathogens displaying increased resistance and virulence in response to each other over time.This research was supported by a Natural Environment Research Council standard grant to C.B. (NE/M00256X)

    Measurement properties of the Musculoskeletal Health Questionnaire (MSK-HQ): a between country comparison.

    Get PDF
    Background: The Musculoskeletal Health Questionnaire (MSK-HQ) has been developed to measure musculoskeletal health status across musculoskeletal conditions and settings. However, the MSK-HQ needs to be further evaluated across settings and different languages. Objective: The objective of the study was to evaluate and compare measurement properties of the MSK-HQ across Danish (DK) and English (UK) cohorts of patients from primary care physiotherapy services with musculoskeletal pain

    Chimpanzees balance resources and risk in an anthropogenic landscape of fear

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record.Data availability: The datasets generated for this study are available from the corresponding author on request. Camera trap data may be requested in a record table form.Human-wildlife coexistence is possible when animals can meet their ecological requirements while managing human-induced risks. Understanding how wildlife balance these trade-offs in anthropogenic environments is crucial to develop effective strategies to reduce risks of negative interactions, including bi-directional aggression and disease transmission. For the first time, we use a landscape of fear framework with Bayesian spatiotemporal modelling to investigate anthropogenic risk-mitigation and optimal foraging trade-offs in Critically Endangered western chimpanzees (Pan troglodytes verus). Using 12 months of camera trap data (21 camera traps, 6722 camera trap days) and phenology on wild and cultivated plant species collected at Caiquene–Cadique, Cantanhez National Park (Guinea-Bissau), we show that humans and chimpanzees broadly overlapped in their use of forest and anthropogenic parts of the habitat including villages and cultivated areas. The spatiotemporal model showed that chimpanzee use of space was predicted by the availability of naturalised oil-palm fruit. Chimpanzees used areas away from villages and agriculture more intensively, but optimised their foraging strategies by increasing their use of village areas with cultivated fruits when wild fruits were scarce. Our modelling approach generates fine-resolution space–time output maps, which can be scaled-up to identify human-wildlife interaction hotspots at the landscape level, informing coexistence strategy.Darwin Initiative (Darwin Finance – LTS International Ltd)FCTMohamed bin Zayed Species Conservation FundConservation International/Global Wildlife Conservation’s Primate Action FundPrimate Conservation Inc.Primate Society of Great BritainInternational Primatological Societ

    Monte Carlo simulation of expected outcomes with the AcrySof® toric intraocular lens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To use a Monte Carlo simulation to predict postoperative results with the AcrySof<sup>® </sup>Toric lens, evaluating the likelihood of over- or under-correction using various toric lens selection criteria.</p> <p>Methods</p> <p>Keratometric data were obtained from a large patient population with preoperative corneal astigmatism <= 2.50D (2,000 eyes). The probability distributions for toric marking accuracy, surgically induced astigmatism and lens rotation were estimated using available data. Anticipated residual astigmatism was calculated using a Monte Carlo simulation under two different lens selection scenarios.</p> <p>Results</p> <p>This simulation demonstrated that random errors in alignment, surgically induced astigmatism and lens rotation slightly reduced the overall effect of the toric lens. Residual astigmatism was statistically significantly higher under the simulation of surgery relative to an exact calculation (p < 0.05). The simulation also demonstrated that more aggressive lens selection criteria could produce clinically significant reductions in residual astigmatism in a high percentage of patients.</p> <p>Conclusion</p> <p>Monte Carlo simulation suggests that surgical variability and lens orientation/rotation variability may combine to produce small reductions in the correction achieved with the AcrySof<sup>® </sup>Toric<sup>® </sup>IOL. Adopting more aggressive lens selection criteria may yield significantly lower residual astigmatism values for many patients, with negligible overcorrections. Surgeons are encouraged to evaluate their AcrySof<sup>® </sup>Toric<sup>® </sup>outcomes to determine if they should modify their individual lens selection criteria, or their default surgically induced astigmatism value, to benefit their patients.</p

    Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography

    Get PDF
    One of the most severe limitations of functional neuroimaging techniques, such as magnetoencephalography (MEG), is that participants must maintain a fixed head position during data acquisition. This imposes restrictions on the characteristics of the experimental cohorts that can be scanned and the experimental questions that can be addressed. For these reasons, the use of ‘wearable’ neuroimaging, in which participants can move freely during scanning, is attractive. The most successful example of wearable neuroimaging is electroencephalography (EEG), which employs lightweight and flexible instrumentation that makes it useable in almost any experimental setting. However, EEG has major technical limitations compared to MEG, and therefore the development of wearable MEG, or hybrid MEG/EEG systems, is a compelling prospect. In this paper, we combine and compare EEG and MEG measurements, the latter made using a new generation of optically-pumped magnetometers (OPMs). We show that these new second generation commercial OPMs, can be mounted on the scalp in an ‘EEG-like’ cap, enabling the acquisition of high fidelity electrophysiological measurements. We show that these sensors can be used in conjunction with conventional EEG electrodes, offering the potential for the development of hybrid MEG/EEG systems. We compare concurrently measured signals, showing that, whilst both modalities offer high quality data in stationary subjects, OPM-MEG measurements are less sensitive to artefacts produced when subjects move. Finally, we show using simulations that OPM-MEG offers a fundamentally better spatial specificity than EEG. The demonstrated technology holds the potential to revolutionise the utility of functional brain imaging, exploiting the flexibility of wearable systems to facilitate hitherto impractical experimental paradigms

    Experimental evidence for stabilizing selection on virulence in a bacterial pathogen

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData archiving: Data reported in this paper have been deposited in Dryad Digital Repository (https://doi.org/10.5061/dryad.9cnp5hqgh).The virulence‐transmission trade‐off hypothesis has provided a dominant theoretical basis for predicting pathogen virulence evolution, but empirical tests are rare, particularly at pathogen emergence. The central prediction of this hypothesis is that pathogen fitness is maximized at intermediate virulence due to a trade‐off between infection duration and transmission rate. However, obtaining sufficient numbers of pathogen isolates of contrasting virulence to test the shape of relationships between key pathogen traits, and doing so without the confounds of evolved host protective immunity (as expected at emergence), is challenging. Here, we inoculated 55 isolates of the bacterial pathogen, Mycoplasma gallisepticum, into non‐resistant house finches (Haemorhous mexicanus) from populations that have never been exposed to the disease. Isolates were collected over a 20‐year period from outbreak in disease‐exposed populations of house finches and vary markedly in virulence. We found a positive linear relationship between pathogen virulence and transmission rate to an uninfected sentinel, supporting the core assumption of the trade‐off hypothesis. Further, in support of the key prediction, there was no evidence for directional selection on a quantitative proxy of pathogen virulence and, instead, isolates of intermediate virulence were fittest. Surprisingly, however, the positive relationship between virulence and transmission rate was not underpinned by variation in pathogen load or replication rate as is commonly assumed. Our results indicate that selection favors pathogens of intermediate virulence at disease emergence in a novel host species, even when virulence and transmission are not linked to pathogen load.Natural Environment Research Council (NERC

    Activity and Habitat Use of Chimpanzees (Pan troglodytes verus) in the Anthropogenic Landscape of Bossou, Guinea, West Africa

    Get PDF
    Many primate populations inhabit anthropogenic landscapes. Understanding their long-term ability to persist in such environments and associated real and perceived risks for both primates and people is essential for effective conservation planning. Primates in forest–agricultural mosaics often consume cultivars to supplement their diet, leading to potentially negative encounters with farmers. When crossing roads, primates also face the risk of encounters with people and collision with vehicles. Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa, face such risks regularly. In this study, we aimed to examine their activity budget across habitat types and the influence of anthropogenic risks associated with cultivated fields, roads, and paths on their foraging behavior in noncultivated habitat. We conducted 6-h morning or afternoon follows daily from April 2012 to March 2013. Chimpanzees preferentially used forest habitat types for traveling and resting and highly disturbed habitat types for socializing. Wild fruit and crop availability influenced seasonal habitat use for foraging. Overall, chimpanzees preferred mature forest for all activities. They showed a significant preference for foraging at >200 m from cultivated fields compared to 0–100 m and 101–200 m, with no effect of habitat type or season, suggesting an influence of associated risk. Nevertheless, the chimpanzees did not actively avoid foraging close to roads and paths. Our study reveals chimpanzee reliance on different habitat types and the influence of human-induced pressures on their activities. Such information is critical for the establishment of effective land use management strategies in anthropogenic landscapes

    Causal hierarchy within the thalamo-cortical network in spike and wave discharges

    Get PDF
    Background: Generalised spike wave (GSW) discharges are the electroencephalographic (EEG) hallmark of absence seizures, clinically characterised by a transitory interruption of ongoing activities and impaired consciousness, occurring during states of reduced awareness. Several theories have been proposed to explain the pathophysiology of GSW discharges and the role of thalamus and cortex as generators. In this work we extend the existing theories by hypothesizing a role for the precuneus, a brain region neglected in previous works on GSW generation but already known to be linked to consciousness and awareness. We analysed fMRI data using dynamic causal modelling (DCM) to investigate the effective connectivity between precuneus, thalamus and prefrontal cortex in patients with GSW discharges. Methodology and Principal Findings: We analysed fMRI data from seven patients affected by Idiopathic Generalized Epilepsy (IGE) with frequent GSW discharges and significant GSW-correlated haemodynamic signal changes in the thalamus, the prefrontal cortex and the precuneus. Using DCM we assessed their effective connectivity, i.e. which region drives another region. Three dynamic causal models were constructed: GSW was modelled as autonomous input to the thalamus (model A), ventromedial prefrontal cortex (model B), and precuneus (model C). Bayesian model comparison revealed Model C (GSW as autonomous input to precuneus), to be the best in 5 patients while model A prevailed in two cases. At the group level model C dominated and at the population-level the p value of model C was ∼1. Conclusion: Our results provide strong evidence that activity in the precuneus gates GSW discharges in the thalamo-(fronto) cortical network. This study is the first demonstration of a causal link between haemodynamic changes in the precuneus - an index of awareness - and the occurrence of pathological discharges in epilepsy. © 2009 Vaudano et al
    corecore