261 research outputs found

    Performance of Glass Woven Fabric Composites with Admicellar-Coated Thin Elastomeric Interphase

    Get PDF
    Adequate stress transfer between the inorganic reinforcement and surrounding polymeric matrix is essential for achieving enhanced structural integrity and extended lifetime performance of fiber-reinforced composites. The insertion of an elastomeric interlayer helps increase the stress-transfer capabilities across the fiber/matrix interface and considerably reduces crack initiation phenomena at the fiber ends. In this study, admicellar polymerization is used to modify the fiber/matrix interface in glass woven fabric composites by forming thickness-controlled poly(styrene-co-isoprene) coatings. These admicellar interphases have distinct characteristics (e.g., topology and surface coverage) depending on the surfactant/monomer (S/M) ratios used during the polymerization reaction. Overall, the admicellar coatings have a positive effect on the mechanical response of resin transfer molded (RTM), E-glass/epoxy parts. For instance, ultimate tensile strength (UTS) of composites with admicellar sizings improved 50 to 55% over the control desized samples. Interlaminar shear strength (ILSS) also showed increases ranging from 18 to 38% over the same control group. Interestingly, the flexural properties of these composites proved sensitive to the type of interphase formed for various admicellar polymerization conditions. Higher surface coverage and film connectedness in admicellar polymeric sizings are observed to enhance stress transfer at the interfacial region.Ye

    Quantifying Inactive Lithium in Lithium Metal Batteries

    Get PDF
    Inactive lithium (Li) formation is the immediate cause of capacity loss and catastrophic failure of Li metal batteries. However, the chemical component and the atomic level structure of inactive Li have rarely been studied due to the lack of effective diagnosis tools to accurately differentiate and quantify Li+ in solid electrolyte interphase (SEI) components and the electrically isolated unreacted metallic Li0, which together comprise the inactive Li. Here, by introducing a new analytical method, Titration Gas Chromatography (TGC), we can accurately quantify the contribution from metallic Li0 to the total amount of inactive Li. We uncover that the Li0, rather than the electrochemically formed SEI, dominates the inactive Li and capacity loss. Using cryogenic electron microscopies to further study the microstructure and nanostructure of inactive Li, we find that the Li0 is surrounded by insulating SEI, losing the electronic conductive pathway to the bulk electrode. Coupling the measurements of the Li0 global content to observations of its local atomic structure, we reveal the formation mechanism of inactive Li in different types of electrolytes, and identify the true underlying cause of low Coulombic efficiency in Li metal deposition and stripping. We ultimately propose strategies to enable the highly efficient Li deposition and stripping to enable Li metal anode for next generation high energy batteries

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland

    Get PDF
    Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups – based on life form or productivity of the habitat – upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal. Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions

    Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse

    Get PDF
    This study describes cytoarchitectonic criteria to define the prefrontal cortical areas in the mouse brain (C57BL/6 strain). Currently, well-illustrated mouse brain stereotaxic atlases are available, which, however, do not provide a description of the distinctive cytoarchitectonic characteristics of individual prefrontal areas. Such a description is of importance for stereological, neuronal tracing, and physiological, molecular and neuroimaging studies in which a precise parcellation of the prefrontal cortex (PFC) is required. The present study describes and illustrates: the medial prefrontal areas, i.e., the infralimbic, prelimbic, dorsal and ventral anterior cingulate and Fr2 area; areas of the lateral PFC, i.e., the dorsal agranular insular cortical areas and areas of the ventral PFC, i.e., the lateral, ventrolateral, ventral and medial orbital areas. Each cytoarchitectonically defined boundary is corroborated by one or more chemoarchitectonic stainings, i.e., acetylcholine esterase, SMI32, SMI311, dopamine, parvalbumin, calbindin and myelin staining

    Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mushroom polysaccharides have traditionally been used for the prevention and treatment of a multitude of disorders like infectious illnesses, cancers and various autoimmune diseases. Crude mushroom extracts have been tested without detailed chemical analyses of its polysaccharide content. For the present study we decided to chemically determine the carbohydrate composition of semi-purified extracts from 2 closely related and well known basidiomycete species, i.e. <it>Agaricus bisporus </it>and <it>A. brasiliensis </it>and to study their effects on the innate immune system, in particular on the <it>in vitro </it>induction of pro-inflammatory cytokines, using THP-1 cells.</p> <p>Methods</p> <p>Mushroom polysaccharide extracts were prepared by hot water extraction and precipitation with ethanol. Their composition was analyzed by GC-MS and NMR spectroscopy. PMA activated THP-1 cells were treated with the extracts under different conditions and the production of pro-inflammatory cytokines was evaluated by qPCR.</p> <p>Results</p> <p>Semi-purified polysaccharide extracts of <it>A. bisporus </it>and <it>A. brasiliensis </it>(= <it>blazei</it>) were found to contain (1→6),(1→4)-linked α-glucan, (1→6)-linked β-glucan, and mannogalactan. Their proportions were determined by integration of <sup>1</sup>H-NMR signs, and were considerably different for the two species. <it>A. brasiliensis </it>showed a higher content of β-glucan, while <it>A. bisporus </it>presented mannogalactan as its main polysaccharide. The extracts induced a comparable increase of transcription of the pro-inflammatory cytokine genes IL-1β and TNF-α as well as of COX-2 in PMA differentiated THP-1 cells. Pro-inflammatory effects of bacterial LPS in this assay could be reduced significantly by the simultaneous addition of <it>A. brasiliensis </it>extract.</p> <p>Conclusions</p> <p>The polysaccharide preparations from the closely related species <it>A. bisporus </it>and <it>A. brasiliensis </it>show major differences in composition: <it>A. bisporus </it>shows high mannogalactan content whereas <it>A. brasiliensis </it>has mostly β-glucan. Semi-purified polysaccharide extracts from both <it>Agaricus </it>species stimulated the production of pro-inflammatory cytokines and enzymes, while the polysaccharide extract of <it>A. brasiliensis </it>reduced synthesis of these cytokines induced by LPS, suggesting programmable immunomodulation.</p

    The Characterization of Helicobacter pylori DNA Associated with Ancient Human Remains Recovered from a Canadian Glacier

    Get PDF
    Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of nearly half of the world's population. Genotypic characterization of H. pylori strains involves the analysis of virulence-associated genes, such as vacA, which has multiple alleles. Previous phylogenetic analyses have revealed a connection between modern H. pylori strains and the movement of ancient human populations. In this study, H. pylori DNA was amplified from the stomach tissue of the Kwäday Dän Ts'ìnchi individual. This ancient individual was recovered from the Samuel Glacier in Tatshenshini-Alsek Park, British Columbia, Canada on the traditional territory of the Champagne and Aishihik First Nations and radiocarbon dated to a timeframe of approximately AD 1670 to 1850. This is the first ancient H. pylori strain to be characterized with vacA sequence data. The Tatshenshini H. pylori strain has a potential hybrid vacA m2a/m1d middle (m) region allele and a vacA s2 signal (s) region allele. A vacA s2 allele is more commonly identified with Western strains, and this suggests that European strains were present in northwestern Canada during the ancient individual's time. Phylogenetic analysis indicated that the vacA m1d region of the ancient strain clusters with previously published novel Native American strains that are closely related to Asian strains. This indicates a past connection between the Kwäday Dän Ts'ìnchi individual and the ancestors who arrived in the New World thousands of years ago
    corecore