1,953 research outputs found

    Chromosomal periodicity and positional networks of genes in Escherichia coli

    Get PDF
    Escherichia coli periodic gene distribution is identified for a periodic interval of 33 kb.Two positional networks of genes are discovered by studying gene periodic distribution: one is driven by metabolic genes and the other by genes involved in cellular processing and signaling.A functional core of Escherichia coli genes drives gene periodic distribution.A few chromosomal regions that preserve gene transcription profiles across environmental changes are identified.This single genome analysis approach can be taken as a footprint for a large-scale bacterial and archaeal periodic distribution analysis

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Binaries and Globular Cluster Dynamics

    Get PDF
    We summarize the results of recent theoretical work on the dynamical evolution of globular clusters containing primordial binaries. Even a very small initial binary fraction (e.g., 10%) can play a key role in supporting a cluster against gravothermal collapse for many relaxation times. Inelastic encounters between binaries and single stars or other binaries provide a very significant energy source for the cluster. These dynamical interactions also lead to the production of large numbers of exotic systems such as ultracompact X-ray binaries, recycled radio pulsars, double degenerate systems, and blue stragglers. Our work is based on a new parallel supercomputer code implementing Henon's Monte Carlo method for simulating the dynamical evolution of dense stellar systems in the Fokker-Planck approximation. This new code allows us to calculate very accurately the evolution of a cluster containing a realistic number of stars (N ~ 10^5 - 10^6) in typically a few hours to a few days of computing time. The discrete, star-by-star representation of the cluster in the simulation makes it possible to treat naturally a number of important processes, including single and binary star evolution, all dynamical interactions of single stars and binaries, and tidal interactions with the Galaxy.Comment: 15 pages, to appear in `The Influence of Binaries on Stellar Population Studies', ed. D. Vanbeveren (Kluwer

    A Stealth Supersymmetry Sampler

    Get PDF
    The LHC has strongly constrained models of supersymmetry with traditional missing energy signatures. We present a variety of models that realize the concept of Stealth Supersymmetry, i.e. models with R-parity in which one or more nearly-supersymmetric particles (a "stealth sector") lead to collider signatures with only a small amount of missing energy. The simplest realization involves low-scale supersymmetry breaking, with an R-odd particle decaying to its superpartner and a soft gravitino. We clarify the stealth mechanism and its differences from compressed supersymmetry and explain the requirements for stealth models with high-scale supersymmetry breaking, in which the soft invisible particle is not a gravitino. We also discuss new and distinctive classes of stealth models that couple through a baryon portal or Z' gauge interactions. Finally, we present updated limits on stealth supersymmetry in light of current LHC searches.Comment: 45 pages, 16 figure

    Perceptions of Teachers’ Interpersonal Styles and Well-Being and Ill-Being in Secondary School Physical Education Students: The Role of Need Satisfaction and Need Frustration

    Get PDF
    This study examined the associations among physical education students’ perceptions of their teachers’ autonomy-supportive and controlling interpersonal styles, need satisfaction and need frustration, and indices of psychological well-being (subjective vitality) and ill-being (negative affect). The results from 591 Chinese secondary school students in Hong Kong indicated that the relationship between students’ perceptions of autonomy-supportive teaching behaviors and subjective vitality was primarily mediated by need satisfaction, whereas the relationship between perceived controlling teaching behaviors and negative affect was primarily mediated by need frustration. The results obtained from the multi-group structural equation model also suggested that these relationships were invariant across sex

    ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells

    Get PDF
    Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity

    Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force

    Get PDF
    Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups
    corecore