489 research outputs found

    Change and Aging Senescence as an adaptation

    Get PDF
    Understanding why we age is a long-lived open problem in evolutionary biology. Aging is prejudicial to the individual and evolutionary forces should prevent it, but many species show signs of senescence as individuals age. Here, I will propose a model for aging based on assumptions that are compatible with evolutionary theory: i) competition is between individuals; ii) there is some degree of locality, so quite often competition will between parents and their progeny; iii) optimal conditions are not stationary, mutation helps each species to keep competitive. When conditions change, a senescent species can drive immortal competitors to extinction. This counter-intuitive result arises from the pruning caused by the death of elder individuals. When there is change and mutation, each generation is slightly better adapted to the new conditions, but some older individuals survive by random chance. Senescence can eliminate those from the genetic pool. Even though individual selection forces always win over group selection ones, it is not exactly the individual that is selected, but its lineage. While senescence damages the individuals and has an evolutionary cost, it has a benefit of its own. It allows each lineage to adapt faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure

    Cytogerontology since 1881: A reappraisal of August Weismann and a review of modern progress

    Get PDF
    Cytogerontology, the science of cellular ageing, originated in 1881 with the prediction by August Weismann that the somatic cells of higher animals have limited division potential. Weismann's prediction was derived by considering the role of natural selection in regulating the duration of an organism's life. For various reasons, Weismann's ideas on ageing fell into neglect following his death in 1914, and cytogerontology has only reappeared as a major research area following the demonstration by Hayflick and Moorhead in the early 1960s that diploid human fibroblasts are restricted to a finite number of divisions in vitro. In this review we give a detailed account of Weismann's theory, and we reveal that his ideas were both more extensive in their scope and more pertinent to current research than is generally recognised. We also appraise the progress which has been made over the past hundred years in investigating the causes of ageing, with particular emphasis being given to (i) the evolution of ageing, and (ii) ageing at the cellular level. We critically assess the current state of knowledge in these areas and recommend a series of points as primary targets for future research

    Serum 25-hydroxyvitamin D and cognitive decline in the very old: the Newcastle 85+ Study.

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.BACKGROUND AND PURPOSE: Studies investigating the association between 25-hydroxyvitamin D [25(OH)D] and cognition in the very old (85+) are lacking. METHODS: Cross-sectional (baseline) and prospective data (up to 3 years follow-up) from 775 participants in the Newcastle 85+ Study were analysed for global (measured by the Standardized Mini-Mental State Examination) and attention-specific (measured by the attention battery of the Cognitive Drug Research test) cognitive performance in relation to season-specific 25(OH)D quartiles. RESULTS: Those in the lowest and highest season-specific 25(OH)D quartiles had an increased risk of impaired prevalent (1.66, 95% confidence interval 1.06-2.60, P = 0.03; 1.62, 95% confidence interval 1.02-2.59, P = 0.04, respectively) but not incident global cognitive functioning or decline in functioning compared with those in the middle quartiles adjusted for sociodemographic, health and lifestyle confounders. Random effects models showed that participants belonging to the lowest and highest 25(OH)D quartiles, compared with those in the middle quartiles, had overall slower (log-transformed) attention reaction times for Choice Reaction Time (lowest, β = 0.023, P = 0.01; highest, β = 0.021, P = 0.02), Digit Vigilance Task (lowest, β = 0.009, P = 0.05; highest, β = 0.01, P = 0.02) and Power of Attention (lowest, β = 0.017, P = 0.02; highest, β = 0.022, P = 0.002) and greater Reaction Time Variability (lowest, β = 0.021, P = 0.02; highest, β = 0.02, P = 0.03). The increased risk of worse global cognition and attention amongst those in the highest quartile was not observed in non-users of vitamin D supplements/medication. CONCLUSION: Low and high season-specific 25(OH)D quartiles were associated with prevalent cognitive impairment and poorer overall performance in attention-specific tasks over 3 years in the very old, but not with global cognitive decline or incident impairment.This work was supported by the National Institute for Health Research Newcastle Biomedical Research Centre based at Newcastle Hospitals Foundation Trust and Newcastle University (AG). The Newcastle 85+ Study has been funded by the Medical Research Council, Biotechnology and Biological Sciences Research Council and the Dunhill Medical Trust. Additional work has also been funded by the British Heart Foundation, Unilever Corporate Research, Newcastle University and National Health Service (NHS) North of Tyne (Newcastle Primary Care Trust). The views expressed in this paper are those of the authors and not necessarily those of the National Health Service, UK. We acknowledge the operational support of NHS North of Tyne, the local general practitioners and their staff, the research nurses, laboratory technicians, data management and clerical team, as well as many colleagues for their expert advice. Thanks are due especially to the study participants

    The Newcastle 85+ study: biological, clinical and psychosocial factors associated with healthy ageing: study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The UK, like other developed countries, is experiencing a marked change in the age structure of its population characterised by increasing life expectancy and continuing growth in the older fraction of the population. There is remarkably little up-to-date information about the health of the <it>oldest old </it>(over 85 years), demographically the fastest growing section of the population. There is a need, from both a policy and scientific perspective, to describe in detail the health status of this population and the factors that influence individual health trajectories. For a very large proportion of medical conditions, age is the single largest risk factor. Gaining new knowledge about why aged cells and tissues are more vulnerable to pathology is likely to catalyse radical new insights and opportunities to intervene. The aims of the Newcastle 85+ Study are to expose the spectrum of health within an inception cohort of 800 85 year-olds; to examine health trajectories and outcomes as the cohort ages and their associations with underlying biological, medical and social factors; and to advance understanding of the biological nature of ageing.</p> <p>Methods</p> <p>A cohort of 800 85 year olds from Newcastle and North Tyneside will be recruited at baseline and followed until the last participant has died. Eligible individuals will be <it>all </it>those who turn 85 during the year 2006 (i.e. born in 1921) and who are registered with a Newcastle or North Tyneside general practice. Participants will be visited in their current residence (own home or institution) by a research nurse at baseline, 18 months and 36 months. The assessment protocol entails a detailed multi-dimensional health assessment together with review of general practice medical records. Participants will be flagged with the NHS Central Register to provide details of the date and cause of death.</p> <p>Discussion</p> <p>The Newcastle 85+ Study will address key questions about health and health-maintenance in the 85+ population, with a particular focus on quantitative assessment of factors underlying variability in health, and on the relationships between health, nutrition and biological markers of the fundamental processes of ageing.</p

    On the evolutionary origin of aging

    Get PDF
    It is generally believed that the first organisms did not age, and that aging thus evolved at some point in the history of life. When and why this transition occurred is a fundamental question in evolutionary biology. Recent reports of aging in bacteria suggest that aging predates the emergence of eukaryotes and originated in simple unicellular organisms. Here we use simple models to study why such organisms would evolve aging. These models show that the differentiation between an aging parent and a rejuvenated offspring readily evolves as a strategy to cope with damage that accumulates due to vital activities. We use measurements of the age-specific performance of individual bacteria to test the assumptions of the model, and find evidence that they are fulfilled. The mechanism that leads to aging is expected to operate in a wide range of organisms, suggesting that aging evolved early and repeatedly in the history of life. Aging might thus be a more fundamental aspect of cellular organisms than assumed so far

    An in silico model of the ubiquitin-proteasome system that incorporates normal homeostasis and age-related decline

    Get PDF
    BACKGROUND: The ubiquitin-proteasome system is responsible for homeostatic degradation of intact protein substrates as well as the elimination of damaged or misfolded proteins that might otherwise aggregate. During ageing there is a decline in proteasome activity and an increase in aggregated proteins. Many neurodegenerative diseases are characterised by the presence of distinctive ubiquitin-positive inclusion bodies in affected regions of the brain. These inclusions consist of insoluble, unfolded, ubiquitinated polypeptides that fail to be targeted and degraded by the proteasome. We are using a systems biology approach to try and determine the primary event in the decline in proteolytic capacity with age and whether there is in fact a vicious cycle of inhibition, with accumulating aggregates further inhibiting proteolysis, prompting accumulation of aggregates and so on. A stochastic model of the ubiquitin-proteasome system has been developed using the Systems Biology Mark-up Language (SBML). Simulations are carried out on the BASIS (Biology of Ageing e-Science Integration and Simulation) system and the model output is compared to experimental data wherein levels of ubiquitin and ubiquitinated substrates are monitored in cultured cells under various conditions. The model can be used to predict the effects of different experimental procedures such as inhibition of the proteasome or shutting down the enzyme cascade responsible for ubiquitin conjugation. RESULTS: The model output shows good agreement with experimental data under a number of different conditions. However, our model predicts that monomeric ubiquitin pools are always depleted under conditions of proteasome inhibition, whereas experimental data show that monomeric pools were depleted in IMR-90 cells but not in ts20 cells, suggesting that cell lines vary in their ability to replenish ubiquitin pools and there is the need to incorporate ubiquitin turnover into the model. Sensitivity analysis of the model revealed which parameters have an important effect on protein turnover and aggregation kinetics. CONCLUSION: We have developed a model of the ubiquitin-proteasome system using an iterative approach of model building and validation against experimental data. Using SBML to encode the model ensures that it can be easily modified and extended as more data become available. Important aspects to be included in subsequent models are details of ubiquitin turnover, models of autophagy, the inclusion of a pool of short-lived proteins and further details of the aggregation process
    corecore