2,701 research outputs found

    The supersymmetric Ward identities on the lattice

    Get PDF
    Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY Yang Mills theory discretized on the lattice with Wilson fermions (gluinos). They are used in order to compute non-perturbatively a subtracted gluino mass and the mixing coefficient of the SUSY current. The computations were performed at gauge coupling β\beta=2.3 and hopping parameter κ\kappa=0.1925, 0.194, 0.1955 using the two-step multi-bosonic dynamical-fermion algorithm. Our results are consistent with a scenario where the Ward identities are satisfied up to O(a) effects. The vanishing of the gluino mass occurs at a value of the hopping parameter which is not fully consistent with the estimate based on the chiral phase transition. This suggests that, although SUSY restoration appears to occur close to the continuum limit of the lattice theory, the results are still affected by significant systematic effects.Comment: 34 pages, 7 figures. Typo corrected, last sentence reformulated, reference added. To appear in Eur. Phys. J.

    Counterflow Extension for the F.A.S.T.-Model

    Full text link
    The F.A.S.T. (Floor field and Agent based Simulation Tool) model is a microscopic model of pedestrian dynamics, which is discrete in space and time. It was developed in a number of more or less consecutive steps from a simple CA model. This contribution is a summary of a study on an extension of the F.A.S.T-model for counterflow situations. The extensions will be explained and it will be shown that the extended F.A.S.T.-model is capable of handling various counterflow situations and to reproduce the well known lane formation effect.Comment: Contribution to Crowds and Cellular Automata Workshop 2008. Accepted for publication in "Cellular Automata -- 8th International Conference on Cellular Automata for Research and Industry, ACRI 2008, Yokohama, Japan, September 23-26, Springer 2008, Proceedings

    Analytical approximation for single-impurity Anderson model

    Get PDF
    We have applied the recently developed dual fermion technique to the spectral properties of single-band Anderson impurity problem (SIAM). In our approach a series expansion is constructed in vertices of the corresponding atomic Hamiltonian problem. This expansion contains a small parameter in two limiting cases: in the weak coupling case (U/t→0U/t \to 0), due to the smallness of the irreducible vertices, and near the atomic limit (U/t→∞U/t \to \infty), when bare propagators are small. Reasonable results are obtained also for the most interesting case of strong correlations (U≈tU \approx t). The atomic problem of the Anderson impurity model has a degenerate ground state, so the application of the perturbation theory is not straightforward. We construct a special approach dealing with symmetry-broken ground state of the renormalized atomic problem. Formulae for the first-order dual diagram correction are obtained analytically in the real-time domain. Most of the Kondo-physics is reproduced: logarithmic contributions to the self energy arise, Kondo-like peak at the Fermi level appears, and the Friedel sum rule is fulfilled. Our approach describes also renormalization of atomic resonances due to hybridization with a conduction band. A generalization of the proposed scheme to a multi-orbital case can be important for the realistic description of correlated solids.Comment: 6 pages, 5 figure

    A new approach to spherically symmetric junction surfaces and the matching of FLRW regions

    Full text link
    We investigate timelike junctions (with surface layer) between spherically symmetric solutions of the Einstein-field equation. In contrast to previous investigations this is done in a coordinate system in which the junction surface motion is absorbed in the metric, while all coordinates are continuous at the junction surface. The evolution equations for all relevant quantities are derived. We discuss the no-surface layer case (boundary surface) and study the behaviour for small surface energies. It is shown that one should expect cases in which the speed of light is reached within a finite proper time. We carefully discuss necessary and sufficient conditions for a possible matching of spherically symmetric sections. For timelike junctions between spherically symmetric space-time sections we show explicitly that the time component of the Lanczos equation always reduces to an identity (independently of the surface equation of state). The results are applied to the matching of FLRW models. We discuss `vacuum bubbles' and closed-open junctions in detail. As illustrations several numerical integration results are presented, some of them indicate that the junction surface can reach the speed of light within a finite time.Comment: new version - corrected boundary surface discussion, improved presentation, and corrected reference 22 pages, many figure

    Conserving Diagrammatic Approximations for Quantum Impurity Models: NCA and CTMA

    Full text link
    Self-consistent diagrammatic approximations to the Anderson or Kondo impurity model, using an exact pseudoparticle representation of the impurity states, are reviewed. We first discuss the infrared exponents of the pseudoparticle propagators as indicators of Fermi liquid behavior through their dependence on the impurity occupation and on magnetic field. Then we discuss the Non-Crossing Approximation (NCA), identifying its strengths, but also its fundamental shortcomings. Physical arguments as well as a perturbative renormalization group analysis suggest that an infinite parquet-type resummation of two-particle vertex diagrams, the Conserving T-Matrix Approximation (CTMA) will cure the deficiencies of NCA. We review results on the pseudoparticle spectral functions, the spin susceptibility and the impurity electron spectral function, supporting that the CTMA provides qualitatively correct results, both in the high-temperature regime and in the strong coupling Fermi liquid regime at low temperatures.Comment: 10 pages, invited article, to appear in a special edition of JPSJ "Kondo Effect - 40 Years after the Discovery", published version, some minor typos correcte

    Beta-delayed deuteron emission from 11Li: decay of the halo

    Get PDF
    The deuteron-emission channel in the beta-decay of the halo-nucleus 11Li was measured at the ISAC facility at TRIUMF by implanting post-accelerated 11Li ions into a segmented silicon detector. The events of interest were identified by correlating the decays of 11Li with those of the daughter nuclei. This method allowed the energy spectrum of the emitted deuterons to be extracted, free from contributions from other channels, and a precise value for the branching ratio B_d = 1.30(13) x 10-4 to be deduced for E(c.m.) > 200 keV. The results provide the first unambiguous experimental evidence that the decay takes place essentially in the halo of 11Li, and that it proceeds mainly to the 9Li + d continuum, opening up a new means to study of the halo wave function of 11Li.Comment: 4 pages, 3 figure

    Transport Properties of One-Dimensional Hubbard Models

    Full text link
    We present results for the zero and finite temperature Drude weight D(T) and for the Meissner fraction of the attractive and the repulsive Hubbard model, as well as for the model with next nearest neighbor repulsion. They are based on Quantum Monte Carlo studies and on the Bethe ansatz. We show that the Drude weight is well defined as an extrapolation on the imaginary frequency axis, even for finite temperature. The temperature, filling, and system size dependence of D is obtained. We find counterexamples to a conjectured connection of dissipationless transport and integrability of lattice models.Comment: 10 pages, 14 figures. Published versio
    • …
    corecore