916 research outputs found

    Technology, education and employment for development

    Get PDF
    Meeting: Technical Workshop on Technology, Education, Employment and Development in Africa, 29-31 Aug. 1983, Nairobi, K

    A systematic study of element mobilisation from gas shales during hydraulic fracturing

    Get PDF
    The large quantities of wastewater produced throughout the lifetime of a shale gas well can contain heavy metals and other regulated potentially toxic elements. These can be mobilised from the target formation by some of the additives present in the hydraulic fracturing fluids (HFF). High levels of inorganic geogenic chemicals may pose a hazard to the environment through accidental releases such as spills of untreated wastewater. The concentration of mobilised elements and the hazard they pose is uncertain and is likely dependant on the chemical agents used in HFF, groundwater composition and the trace element content of targeted shale gas formation. Laboratory protocols were developed to investigate the release of inorganic contaminants of potential concern (e.g. As, Co, Cu, Pb, Se) from shale gas formations around the world. Powdered rock samples were leached for up to 360 hours at elevated temperature (80°C) and a range of pressures (1-200 bar), with synthetic HFF and synthetic groundwater (SGW). Elemental concentrations released into solution were generally much higher in the HFF leachates than in the SGW treatments, indicating that the chemical additives in the HFF influenced element mobilisation. SEM and EDX images show substantial mineral etching and precipitation of secondary phases on shale chips leached for 360 hours with HFF at 80°C and ~180 bar when compared to the SGW experiment. Time-series data also show evidence of mineral dissolution and subsequent precipitation of new phases, which resulted in sequestration of a number of trace elements that were initially mobilised into the solution. We also observed that the carbonate content of the unreacted shale sample had a strong control on the final pH of the HFF leachates. This study shows that additives can enhance the release of geogenic chemicals, but also that subsequent precipitation within the fracture system could limit ultimate release to surface

    Nitrogen fertiliser residues for wheat cropping in subtropical Australia

    Get PDF
    Applied nitrogen (N) recovered by fertilised wheat and by successive wheat crops in a 4-crop sequence (1987-90) was studied by applying 15N-depleted ammonium nitrate (0, 2.5, and 7.5 g/m2) to a Vertisol in the summer-dominant rainfall region of northern Australia. Recoveries of applied N by each of the 4 crops in order of cropping sequence were 60.3¦ 4.2, 4.4 ¦ 2.3, 1 . 3 ¦ 0.49, and 0- 8 ¦ 0.56%, there being no effect of 2 tillage treatments, conventional tillage (CT) and no till (NT), on uptake of applied N. There was very low recovery of residual fertiliser N after the first wheat crop was harvested; usually <lo% of the applied N was recovered. There was evidence of a substantial N carryover benefit where fertiliser N (7.5 g/m2) was applied in 1987, but not when applied at the same rate in 1988 or 1989. Carryover effect was shown only when fertiliser N was applied after a long fallow when antecedent NOT-N was already high (100-150 v. 30-55 kg/ha with a normal summer fallow). Carryover of subsoil NO3 -N from a single N fertiliser application to the crop, as occurred with application in 1987, will provide useful buffer for declining N supplies of soil N in seasons of good crop response. Routine application of N at moderate rates (<75 kg/ha) provides an effective means of supplementing declining soil N reserves for winter cereals in this region of unreliable rainfall

    Effects of Strong Magnetic Fields in Strange Baryonic Matter

    Get PDF
    We investigate the effects of very strong magnetic fields upon the equation of state of dense bayonic matter in which hyperons are present. In the presence of a magnetic field, the equation of state above nuclear density is significantly affected both by Landau quantization and magnetic moment interactions, but only for field strengths B>5×1018B>5\times10^{18} G. The former tends to soften the EOS and increase proton and lepton abundances, while the latter produces an overall stiffening of the EOS. Each results in a supression of hyperons relative to the field-free case. The structure of a neutron star is, however, primarily determined by the magnetic field stress. We utilize existing general relativistic magneto-hydrostatic calculations to demonstrate that maximum average fields within a stable neutron are limited to values B≤1−3×1018B\le 1-3 \times10^{18} G. This is not large enough to significantly influence particle compositions or the matter pressure, unless fluctuations dominate the average field strengths in the interior or configurations with significantly larger field gradients are considered.Comment: 12 pages, 3 figures. To be submitted to Phys. Lett.

    Sustaining productivity of a Vertisol at Warra, Queensland, with fertilisers, no-tillage, or legumes. 1. Organic matter status

    Get PDF
    Management practices involving legume leys, grain legumes, and no-tillage and stubble retention, along with nitrogen (N) fertiliser application for wheat cropping, were examined for their effectiveness in increasing soil organic matter (0-10 cm depth) from 1986 to 1993 in a field experiment on a Vertisol at Warra, Queensland. The treatments were (i) grass + legume leys (purple pigeon grass, Setaria incrassata; Rhodes grass, Chloris gayana; lucerne, Medicago sativa; annual medics, M. scutellata and M. truncatula) of 4 years duration followed by continuous wheat; (ii) 2-year rotation of annual medics and wheat (Triticum aestivum cv. Hartog); (iii) 2-year rotation of lucerne and wheat; (iv) 2-year rotation of chickpea (Cicer arietinum cv. Barwon) and wheat; (v) no-tillage (NT) wheat; and (vi) conventional tillage (CT) wheat. Fertiliser N as urea was applied to both NT wheat and CT wheat at 0,25, and 75 kg N/ha. year. The CT wheat also received N at 12.5 and 25kg N/ha. year. After 4 years, soil organic carbon (C) concentration under grass + legume leys increased by 20% (650 kg C/ha. year) relative to that under continuous CT wheat. Soil total N increased by 11, 18, and 22% after 2, 3, and 4 years, respectively, under grass + legume leys relative to continuous CT wheat. These increases in soil organic matter were mostly confined to the 0-2.5 cm layer. After the start of wheat cropping, organic C and total N levels declined steadily but were still higher than under CT wheat and higher than initial values in December 1985. Although 2-year rotations of lucerne-wheat and medic-wheat had a small effect on soil organic C, soil total N concentrations were higher than in the chickpea-wheat rotation and continuous CT wheat from November 1990 to November 1992. Soil under chickpea-wheat rotation had organic C and total N concentrations similar to continuous CT wheat, although from the former, about 70 kg/ha. year of extra N was removed in the grain from 1989 to 1993. No-tillage practice had a small effect on soil organic C, although total N concentration was higher than under CT wheat in November 1993. These effects were mainly confined to the surface 0-2.5 cm depth. The C to N ratio was only affected in soil under grass + legume leys, and no-tillage treatments. These data show that restoration of soil organic matter in Vertisol requires grass + legume leys, primarily due to increased root biomass, although soil total N can be enhanced by including legume leys for longer duration in cropping systems in the semi-arid and subtropical environment

    Sustaining productivity of a Vertisol at Warra, Queensland, with fertilisers, no-tillage, or legumes. 5. Wheat yields, nitrogen benefits and water-use efficiency of chickpea-wheat rotation

    Get PDF
    In this study, the benefits of chickpea–wheat rotation compared with continuous wheat cropping (wheat–wheat rotation) were evaluated for their effects on soil nitrate nitrogen, wheat grain yields and grain protein concentrations, and water-use efficiency at Warra, southern Queensland from 1988 to 1996. Benefits in terms of wheat grain yields varied, from 17% in 1993 to 61% in 1990, with a mean increase in grain yield of 40% (825 kg/ha). Wheat grain protein concentration increased from 9.4% in a wheat–wheat rotation to 10.7% in a chickpea–wheat rotation, almost a 14% increase in grain protein. There was a mean increase in soil nitrate nitrogen of 35 kg N/ha.1.2 m after 6 months of fallow following chickpea (85 kg N/ha) compared with continuous wheat cropping (50 kg N/ha). This was reflected in additional nitrogen in the wheat grain (20 kg N/ha) and above-ground plant biomass (25 kg N/ha) following chickpea. Water-use efficiency by wheat increased from a mean value of 9.2 kg grain/ha. mm in a wheat–wheat rotation to 11.7 kg grain/ha.mm in a chickpea–wheat rotation. The water-use efficiency values were closely correlated with presowing nitrate nitrogen, and showed no marked distinction between the 2 cropping sequences. Although presowing available water in soil in May was similar in both the chickpea–wheat rotation and the wheat–wheat rotation in all years except 1996, wheat in the former used about 20 mm additional water and enhanced water-use efficiency. Thus, by improving soil fertility through restorative practices such as incorporating chickpea in rotation, water-use efficiency can be enhanced and consequently water runoff losses reduced. Furthermore, beneficial effects of chickpea in rotation with cereals could be enhanced by early to mid sowing (May–mid June) of chickpea, accompanied by zero tillage practice. Wheat of ‘Prime Hard’ grade protein (≥13%) could be obtained in chickpea–wheat rotation by supplementary application of fertiliser N to wheat. In this study, incidence of crown rot of wheat caused by Fusarium graminearum was negligible, and incidence and severity of common root rot of wheat caused by Bipolaris sorokiniana were essentially similar in both cropping sequences and inversely related to the available water in soil at sowing. No other soil-borne disease was observed. Therefore, beneficial effects of chickpea on wheat yields and grain protein were primarily due to additional nitrate nitrogen following the legume crop and consequently better water-use efficiency
    • …
    corecore