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Effects of strong magnetic fields in strange baryonic matter
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Abstract

We investigate the effects of very strong magnetic fields upon the equation of state of dense baryonic matter in which
hyperons are present. In the presence of a magnetic field, the equation of state above nuclear density is significantly affected
both by Landau quantization and magnetic moment interactions, but only for field strengths B > 5 × 1018 G. The former
tends to soften the EOS and increase proton and lepton abundances, while the latter produces an overall stiffening of the EOS.
Each results in a suppression of hyperons relative to the field-free case. The structure of a neutron star is, however, primarily
determined by the magnetic field stress. We utilize existing general relativistic magneto-hydrostatic calculations to demonstrate
that maximum average fields within a stable neutron are limited to values B � 1–3 × 1018 G. This is not large enough to
significantly influence particle compositions or the matter pressure, unless fluctuations dominate the average field strengths in
the interior or configurations with significantly larger field gradients are considered.

 2002 Elsevier Science B.V.

PACS: 26.60+c; 97.60.Jd; 98.35.Eg

Recent discoveries that link soft γ -ray repeaters
and perhaps some anomalous X-ray pulsars with
neutron stars having ultrastrong magnetic fields—the
so-called magnetars (see Table 1 in [1] for a sum-
mary)—have spurred theoretical studies of the effects
ultrastrong magnetic fields have on the equation of
state (EOS) of neutron-star matter and on the struc-
ture of neutron stars (cf. [1–3] and references therein).
The magnetic field strength B needed to dramatically
affect neutron star structure directly can be estimated
with a dimensional analysis [4] equating the magnetic
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field energy EB ∼ (4πR3/3)(B2/8π) with the gravi-
tational binding energy EB.E. ∼ 3GM2/5R, yielding

(1)B ∼ 1.4 × 1018
(

M

1.4 M�

)(
R

10 km

)−2
G,

where M and R are, respectively, the neutron star mass
and radius.

To date, studies of the effects of such ultrastrong
magnetic fields on the EOS and on the structure of
neutron stars have been largely limited to cases in
which the strongly interacting component of matter is
comprised of nucleons [3,5–7]. Our objective in this
Letter is to investigate the effects of magnetic fields
on the EOS of matter containing strangeness-bearing
hyperons. Towards this end, we utilize the theoret-
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Table 1
The measured magnetic moments of spin- 1

2 baryons from Ref. [8]. µN = eh̄/(2mp) = 3.15 × 10−18 MeV G−1 is the nuclear magneton and
the anomalous magnetic moment κb = (µb/µN − qbmp/mb) µN

Species Mass Charge Magnetic moment Anomalous moment
b (MeV) qb µb/µN κb/µN

p 938.3 1 2.79 1.79
n 939.6 0 −1.91 −1.91
Λ 1115.7 0 −0.61 −0.61
Σ+ 1189.4 1 2.46 1.67
Σ0 1192.6 0 1.61 1.61
Σ− 1197.4 −1 −1.16 −0.38
Ξ0 1314.9 0 −1.25 −1.25
Ξ− 1321.3 −1 −0.65 0.06

ical formalism for the EOS developed in Ref. [3].
This allows us to consistently incorporate the effects
of magnetic fields on the EOS in multicomponent,
interacting matter. For the first time, the anomalous
magnetic moments of baryons is included, using a co-
variant description. A further objective is to explore
the consequences of strong magnetic fields for neutron
star structure and maximum masses, which is accom-
plished using the results of general relativistic struc-
tural calulations in Ref. [1].

Charge neutral, beta-equilibrated, neutron-star mat-
ter contains both negatively charged leptons (e and
µ) and positively charged baryons (p and, at higher
densities, Σ+). Magnetic fields quantize the orbital
motion (Landau quantization) of these charged par-
ticles. When the Fermi energy of the p or Σ+ be-
comes significantly altered by the magnetic field, the
pressure and composition of matter in beta equilib-
rium are affected. Landau quantization has a signifi-
cant effect when B∗ = B/Be

c ∼ 105 (Be
c = h̄c/(eλ-2

e)=
4.414 × 1013 G is the critical electron field) [3,5–7].
Higher fields lead to a general softening of the EOS
relative to the case in which magnetic fields are absent.

In strong magnetic fields, contributions from the
anomalous magnetic moments of the baryons (de-
noted hereafter by κb) must also be considered. The
measured magnetic moments µb for nucleons and
strangeness-bearing hyperons are given in Table 1.
With few exceptions, the anomalous magnetic mo-
ments are similar in magnitude. As discussed be-
low, the energies |κnB| 
 2.7 × 10−4B∗ MeV and
|κpB| 
 2.5 × 10−4B∗ MeV measure the changes to
the nucleon Fermi energies, and |κn + κp|B 
 1.67 ×
10−5B∗ MeV measures the change to the beta equi-

librium condition. Since the Fermi energies exceed
20 MeV for the densities of interest, it is clear that
contributions from the anomalous magnetic moments
become significant for B∗ > 105. For such large fields,
complete spin polarization of the neutrons occurs, pro-
ducing an increase in degeneracy pressure and an over-
all stiffening of the EOS that overwhelms the softening
induced by Landau quantization [3].

Similary, in the presence of strong magnetic fields,
all of the hyperons are susceptible to spin polarization
due to magnetic moment interactions with the field.
The net result of the opposing effects of degeneracy
and Landau quantization will depend on the relative
concentrations of the various hyperons, which in turn
depend sensitively on the hyperon–meson interactions
for which only a modest amount of guidance is
available [9–11]. It is one of the purposes of this work
to ascertain the influence of feedback effects due to
mass and energy shifts in multi-component matter.

To describe the EOS of neutron-star matter, we
employ a field theoretical approach (at the mean field
level) in which the baryons interact via the exchange of
σ–ω–ρ mesons.1 We consider two classes of models
that differ in their high density behavior. The two
Lagrangian densities are given by [12,13]

LI = Lb −
(

1 − gσbσ

mb

)
�ΨbmbΨb +Lm +L",

1 The qualitative effects of strong magnetic fields found in
the field-theoretical models also exist in non-relativistic potential
models. This is because the phase space of charged particles is
similarly affected in both approaches by magnetic fields. The effects
due to the anomalous magnetic moments would, however, enter
linearly in a non-relativistic approach, and would thus be more
dramatic in that case.



A.E. Broderick et al. / Physics Letters B 531 (2002) 167–174 169

Table 2
Nucleon–meson and hyperon–meson coupling constants for the GM1–3 and ZM models. The hyperon to nucleon coupling ratios were taken
from Ref. [16]

Model gσN/mσ gωN/mω gρN/mρ xσH xωH xρH b c

(fm) (fm) (fm)

GM1 3.434 2.674 2.100 0.6 0.653 0.6 0.002947 −0.001070
GM2 3.025 2.195 2.189 0.6 0.659 0.6 0.003478 0.01328
GM3 3.151 2.195 2.189 0.6 0.659 0.6 0.008659 −0.002421
ZM 2.736 1.617 2.185 1.0 1.0 1.0 0.0 0.0

Table 3
Nuclear matter properties used to fit coupling constants for the GM1–3 Glendenning and Moszkowski (GM1–3) Zimanyi and Moszkowski
(ZM) models

Model ns −B/A M∗/M K0 asym
(fm−3) (MeV) (MeV) (MeV)

GM1 0.153 16.30 0.70 300 32.5
GM2 0.153 16.30 0.78 300 32.5
GM3 0.153 16.30 0.78 240 32.5
ZM 0.160 16.00 0.86 225 32.5

(2)LII =
(

1 + gσbσ

mb

)
Lb − �ΨbmbΨb +Lm +L".

The baryon, lepton, and meson Lagrangians are given
by

Lb = �Ψb

(
iγµ∂

µ + qbγµA
µ − gωbγµω

µ

− gρbτ3bγµρ
µ − κbσµνF

µν
)
Ψb,

L" =ψl

(
iγµ∂

µ + qlγµA
µ
)
ψl and

(3)

Lm = 1
2
∂µσ∂

µσ − 1
2
m2
σ σ

2 −U(σ)+ 1
2
m2
ωωµω

µ

− 1
4
ΩµνΩµν + 1

2
m2
ρρµρ

µ

− 1
4
PµνPµν − 1

4
FµνFµν,

where Ψb and ψ" are the baryon and lepton Dirac
fields, respectively. The index b runs over the baryons
n, p, Λ, Σ−, Σ0, Σ+, Ξ−, and Ξ0. (Neglect of
the Ω− and the ∆ quartet, which appear only at very
high densities, does not qualitatively affect our conclu-
sions.) The index " runs over the electron and muon.
The baryon mass and the isospin projection are de-
noted by mb and τ3b , respectively. The mesonic and
electromagnetic field tensors are given by their usual
expressions: Ωµν = ∂µων − ∂νωµ, Pµν = ∂µρν −
∂νρµ, and Fµν = ∂µAν −∂νAµ. The strong interaction
couplings are denoted by g, the electromagnetic cou-
plings by q , and the meson masses by m all with ap-

propriate subscripts. The quantity U(σ) denotes scalar
self-interactions and is taken to be of the form U(σ)=
(bmn/3)(gσNσ)3 + (c/4)(gσNσ)4 [12,14,15].

The anomalous magnetic moments are introduced
via the minimal coupling of the baryons to the elec-
tromagnetic field tensor for each baryon. Their con-
tributions in the Lagrangian are contained in the term
−κb�ΨbσµνF

µνΨb , where σµν = i
2 [γµ, γν]. Although

the electromagnetic field is included in LI and LII, it
assumed to be externally generated and only frozen-
field configurations will be considered.

The meson–nucleon giN (i = σ,ω,ρ), and scalar
self-interaction couplings, b and c, were chosen to re-
produce the binding energy B/A, the nuclear satura-
tion density ns , the Dirac effective mass M∗, and the
symmetry energy as . The values of the couplings used
in the models considered are shown in Table 2, and the
associated nuclear matter properties used to calculate
these couplings are shown in Table 3.

The meson–hyperon couplings are assumed to be
fixed fractions of the meson–nucleon couplings, i.e.,
giH = xiHgiN , where for each meson i , the values
of xiH are assumed equal for all hyperons H . The
values of xiH are chosen to reproduce the binding
energy of the Λ at nuclear saturation as suggested
by Glendenning and Moszkowski (GM) [9] and are
also given in Table 2. The high-density behavior of the
EOS is sensitive to the strength of the meson couplings



170 A.E. Broderick et al. / Physics Letters B 531 (2002) 167–174

employed [10] and the models chosen encompass a
fairly wide range of variation. Models GM1–3 employ
linear scalar couplings (LI), while the Zimanyi and
Moszkowski (ZM) model employs a nonlinear scalar
coupling (LII), which is reflected in the high density
behaviors of m∗

n/mn. Comparison of results from the
GM1–3 and ZM models allows us to contrast the
effects of the underlying EOS.

The field equations (not explicitly displayed here)
follow from a natural extension of those used in
Ref. [3] to the case in which hyperons are present.
In charge neutral and beta equilibrated matter, the
conditions∑
b

qbnb +
∑
l

qlnl = 0 and

(4)µb = Bbµn − qbµe,

where µb is the baryon chemical potential (not to be
confused with the magnetic moment µb of Table 1)

and Bb is the baryon number, also apply. The energy
spectra, number densities, scalar number densities, en-
ergy densities, and total pressure are given by straight-
forward generalizations of their analogues in Ref. [3].

In Fig. 1, results are shown for physical quanti-
ties of interest for the baseline model GM3, when
the effects of Landau quantization are included but
those of anomalous magnetic moments are ignored.
As the magnetic field is varied, the generic behavior
of the matter pressure Pm, effective neutron mass m∗

n,
and particle abundances are the same as those found
in Ref. [3], in which matter containing only nucle-
ons was considered. When hyperons appear, the pres-
sure becomes smaller than the case of pure nucleons
for all fields. The effective nucleon mass decreases
slightly when hyperons appear, again independently
of the field strength. The appearance of hyperons pro-
duces pronounced effects on the nucleon and lepton
abundances.

Fig. 1. Matter pressure Pm, neutron Dirac effective mass m∗
n/mn , and concentrations Yi as functions of density (n0 = 0.16 fm−3 is the fiducial

nuclear saturation density) for the model GM3. Each is shown for magnetic field strengths of B∗ = 0, 105, and 106. Pf = B2/8π is the
pressure due to magnetic field stress for the value B∗ = 105. The inset shows Pm as a function of the matter energy density εm. In the right
panels results for leptons are shown by dashed lines while those for baryons are shown by solid lines.
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The cases B∗ = 0 and B∗ = 105 are nearly in-
distinguishable, except for densities less than nu-
clear density (u < 1), where “cavitation” due to
Landau quantization occurs. This effect has been dis-
cussed in Ref. [3] and earlier work (cf., Refs. [5,
6]). However, the structure of a magnetized neutron
star will be mostly affected by contributions from
the magnetic field stress, Pf = B2/8π = 4.814 ×
10−8B∗2 MeV fm−3, which greatly exceeds the mat-
ter pressure Pm at all relevant densities for B∗ � 105,
as shown in Fig. 1 for B∗ = 105.

Hyperons appear near twice nuclear density for
B∗ � 105 in this model. For B∗ > 105 (B > 5 ×
1018 G), the same value needed to noticeably affect the
matter pressure and nucleon abundances, significant
effects on hyperon threshold densities and abundances
are apparent. Landau quantization increases the pro-
ton abundance, and hence the electron concentration
due to charge neutrality. Therefore, µe = µn − µp

is increased. However, at fixed baryon density, the
neutron abundance must then decrease, which signifi-
cantly lowers µn to a greater extent than µn−µp is in-

creased. The net effect is a suppression of hyperons. In
particular, note that µΣ− = 2µn −µp and µΛ = µn.

It should also be noted that, compared to the case
without hyperons (cf. Ref. [3]), the pressure is reduced
for all field strengths, as is the nucleon effective mass.
The magnitude of the nucleon effective mass can be
important in determining the chemical potentials, as
shown below.

We have verified that the qualitative effects of large
fields on the composition, presure and effective mass
are similar for the other three models considered, in
the case that only Landau quantization is considered.
The relative suppression of individual hyperons varies,
however; for example, in models GM2 and ZM the
Λ and Σ− threshold densities reverse at large fields
relative to GM1 and GM3. Importantly, however, the
value B∗ ∼ 105 represents a threshold for field effects
to become significant, independently of the EOS.

The inclusion of anomalous magnetic moments
produces even larger suppressions of hyperons, as dis-
played in Fig. 2 for the baseline model GM3. One
can qualitatively understand this trend by considering

Fig. 2. Same as Fig. 1, but with magnetic moment interactions included.
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the effects of magnetic moments on the baryon chem-
ical potentials, and then examining the effects on the
threshold of the first hyperon to appear. At low temper-
atures, the chemical potentials can be identified with
the Fermi levels of the baryonic energy spectra. The
energy spectrum for charged baryons is given by [3]

Eb,n,s =
√
k2
z +

(√
m∗2
b + 2νqbB + sκpB

)2

+ gωpω
0 + t3bgρpρ

0


m∗
b + k2

z

2m∗
b

+ νqbB

m∗
b

+ sκbB + gωbω
0

(5)+ t3bgρbρ
0,

where the quantity ν = n + s/2 + 1/2 characterizes
the so-called Landau level with n and s (±1) being the
principle quantum number and “spin” quantum num-
ber respectively, and t3b is the isospin projection of
baryon b. The quantities ω0 and ρ0 are mean field so-
lutions of the field equations corresponding to Eq. (3)
(cf. Ref. [3]). The rightmost expression is valid in
the nonrelativistic limits k2

z � m∗2
b , 2ν|qb|B �m∗2

b

and (κbB)
2 �m∗2

b , which are appropriate for the con-
ditions of interest. Similarly, the energy spectrum of
neutral baryons is given by

Eb,s =
√
k2
z +

(√
m∗2
b + k2

x + k2
y + sκbB

)2

+ gωbω
0 + t3bgρbρ

0

(6)
m∗
b + k2

2m∗
b

+ sκbB + gωbω
0 + t3bgρbρ

0.

For both charged and neutral baryons, the chemi-
cal potentials of nearly degenerate systems are set by
the lowest energy spin state. The contribution to neu-
tral baryon energies, and to their chemical potentials,
due to the anomalous magnetic moment is therefore
−|κb|B in Eq. (6). The situation of charged baryons
is more complicated, because of the additional con-
tribution due to the Dirac moment. However, given
that the value of n from Landau quantization generally
exceeds |κb|/µb , the shift in charged baryon chemi-
cal potentials is not as significant as it is for neutral
baryons. In matter containing only nucleons, the pre-
dominant effect of the anomalous magnetic moments
is therefore to decrease µn, and thus the neutron abun-
dance, relative to the case in which the anomalous mo-
ments are ignored (compare Figs. 1 and 2). A further

consequence is that the threshold density for the first
hyperon,Σ−, is increased since µΣ− = 2µn−µp. Al-
though the chemical potential of the Σ− also receives
a contribution from its anomalous magnetic moment,
the magnitude of the change is small compared to
that due to the neutron. Note again that field strengths
B∗ > 105 are necessary to produce appreciable effects.
We have verified that these conclusions hold for the
other three EOSs we considered for the case when
magnetic moments are included.

While most hyperon threshold densities are in-
creased by the inclusion of anomalous magnetic mo-
ments, those of Σ0 and Σ+, the latter to a lesser
extent, are decreased for B∗ > 105. The complex in-
terplay that exists when several baryons are simulta-
neously present makes a simple explanation difficult,
however.

Finally, as noted in Ref. [3], the inclusion of mag-
netic moments produces an increase in pressure and
effective mass at large fields (B∗ > 105), due to in-
creased baryon degeneracies [3]. These increases more
than offset the reductions induced by the inclusion of
hyperons.

Still to be addressed, however, is whether or not sta-
ble stellar configurations can exist in which the mag-
netic field is large enough (B > 5 × 1018 G) that the
properties of matter are significantly affected by the
magnetic field. One step in this direction was recently
undertaken in Ref. [1], in which the limits of hydrosta-
tic equilibrium for axially-symmetric magnetic fields
in general relativistic configurations were analyzed.
As discussed in detail in Ref. [2], in axially symmet-
ric field configurations with a constant current func-
tion, the magnetic field contributes a centrifugal-like
contribution to the total stress tensor. This can be un-
derstood by noting that for the artificial field geometry
considered (namely, �B ∝ ẑ), a superconducting fluid
can move along field lines but not across them. Thus
the “pressure” associated with the magnetic field will
only act equatorially and not vertically. This flattens
an otherwise spherical star, and for large enough fields,
decreases the central (energy) density even as the mass
is increased. For large enough fields, the star’s stability
is eventually compromised.

Hydrostatically stable configurations (of which
some may not be stable to dynamical perturbations)
for the GM3 EOS, both excluding and including hy-
perons, are shown in mass-equatorial radius space in
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Fig. 3. Limits to hydrostatic configurations for neutron stars perme-
ated by axially symmetric magnetic fields. The upper (lower) panel
is for the EOS GM3 including (excluding) hyperons. In each panel,
the lower heavy solid curve is the standard mass-radius relation for
field-free stars. The upper heavy solid curve represents the largest
gravitational mass possible for a given equatorial radius as the mag-
netic fields are increased, for the indicated current function f . The
heavy dashed curve is the locus of minima of the contours of fixed
baryon mass configurations: Ref. [1] suggested that this could be
the limit to dynamical stability. Thin solid lines are contours of the
maximum magnetic field strength in units of 1018 G. Similarly, thin
dashed lines are contours of maximum mass-energy density in units
of the energy density ρ0 at the nuclear saturation density.

Fig. 3. The lower thick black line in each panel is the
usual field-free, spherical result for the mass-radius re-
lation. The upper thick black line represents the largest
possible stable mass for a given equatorial radius as
the internal field is increased. Large axially-symmetric
fields tend to yield flattened configurations, and if
large enough, shift the maximum densities off-center
in the shaded regions in the figure. This results in
toroidal shapes with low-density centers. As discussed
in Ref. [1], regions to the left of the thick dashed line in
this figure are likely unstable to small amplitude per-
turbations and hence unrealistic as stable physical con-
figurations.

Superimposed on this figure are contours of maxi-
mum mass-energy density and magnetic field strength.
For the GM3 model, hyperons appear at zero field at
about twice nuclear density. Therefore, the portions of
the two panels in which the maximum density is be-
low about 3 times nuclear density are nearly identical.
For the particular choice of a constant current func-
tion, but independently of the EOS, it is found that the
maximum value of the magnetic field within the star
cannot exceed about 3 × 1018 G, which corresponds
to B∗ ∼ 7 × 104. In the case of GM3, the maximum
value is B ∼ 1.8 × 1018 G. This field strength is not
nearly large enough to produce appreciable effects on
hyperon or nucleon compositions, with or without the
inclusion of anomalous magnetic moments. The domi-
nant effect of the field arises through the magnetic field
stress, which effectively dominates the matter pressure
below a few times nuclear saturation density, depend-
ing on the field’s orientation. Whether other choices
of current functions, or the relaxation of the condition
of axial symmetry, will alter these conclusions is not
clear, as the answer will likely depend on the detailed
nature of the field configurations considered.

To date only a few cases of spatially varying cur-
rent functions have been explored [2], but these have
all been limited to axial symmetry. Furthermore, the
cases explored have relatively small spatial gradients
so that the ratio of the maximum field to the average
field within the star is not large. It might be that the
shapes of the stars will significantly change with a dif-
ferent field geometry. It is even possible to imagine
a disordered field where 〈B2〉 is significantly larger
than 〈 �B〉2. In this case the pressure will be domi-
nated by fluctuations in the field, but the stars will
tend to be spherical. It is possible that strong magnetic
fields may be held in the core for periods much longer
than the ohmic diffusion time due to interactions be-
tween the magnetic flux tubes and the vortex tubes
expected to be present in a superconducting, super-
fluid, rotating neutron star [17]. Therefore, although
the results to date imply that average fields within a
neutron-star cannot exceed 1–3 × 1018 G before sta-
bility is compromised, the value of the maximum pos-
sible field at any point within the star is undetermined.
As a result, it is possible that the effects of magnetic
fields upon the equation of state or particle composi-
tion will be important in some magnetic field geome-
tries.
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