22,666 research outputs found

    Spontaneous Z2 Symmetry Breaking in the Orbifold Daughter of N=1 Super Yang-Mills Theory, Fractional Domain Walls and Vacuum Structure

    Full text link
    We discuss the fate of the Z2 symmetry and the vacuum structure in an SU(N)xSU(N) gauge theory with one bifundamental Dirac fermion. This theory can be obtained from SU(2N) supersymmetric Yang--Mills (SYM) theory by virtue of Z2 orbifolding. We analyze dynamics of domain walls and argue that the Z2 symmetry is spontaneously broken. Since unbroken Z2 is a necessary condition for nonperturbative planar equivalence we conclude that the orbifold daughter is nonperturbatively nonequivalent to its supersymmetric parent. En route, our investigation reveals the existence of fractional domain walls, similar to fractional D-branes of string theory on orbifolds. We conjecture on the fate of these domain walls in the true solution of the Z2-broken orbifold theory. We also comment on relation with nonsupersymmetric string theories and closed-string tachyon condensation.Comment: 37 pages, 7 figures. v2: various significant changes; revisions explained in the introduction. Final version to appear in Phys.Rev.

    Electron Capture In Pseudo-two-electron Systems: Ar8++He

    Get PDF
    Molecular-structure calculations using the pseudopotential method have been performed on the (ArHe)8+ system. The cross section for single-electron capture in Ar8++He collisions was calculated for energies from 20 eV to 10 keV/amu. The perturbed-stationary-state method [M. Kimura, H. Sato, and R. E. Olson, Phys. Rev. A 28, 2085 (1983)], modified to include electron translation factors appropriate to two-electron systems, was used. The total cross section is relatively energy independent with a value of approximately 2.5x10-15 cm2. The n=4 level of Ar7+ is found to be preferentially populated, with the 4f level being dominant. © 1985 The American Physical Society

    Angular Scattering In Slow Multiple-charged Ion, Atom Collisions

    Get PDF
    The C6++H system is used to illustrate the importance of large-angle scattering in collisions between slow multiply charged ions and atoms. A quantum mechanical description based on a diabatic formalism of the collision system is used to obtain differential cross sections for electron capture in the relative velocity range nu =1*107 to 3*107 cm s-1 (Ecm approximately=48 to 430 eV). The threshold for angular scattering is at E theta approximately=0.2 keV deg which correlates with the curve crossing between initial and final molecular states located at Rx approximately=8a0. The centre-of-mass acceptance angles required to observe fixed fractions of the total electron capture cross sections are presented. Representative examples for the detection of 90% of the total electron capture cross section requires angular acceptances of 78 degrees at 1*107 cm s-1 and 8.5 degrees at 3*107 cm s-1

    Petrology of Chondrule Rims in Yamato-791498 and Asuka-881828, the Least-Altered CR Chondrites in the Japanese NIPR Collection

    Get PDF
    CR chondrites are a group of car-bonaceous chondrites with well-preserved records of formation of their components in the solar nebula. The CR chondrites have undergone a wide range of aqueous alteration from nearly anhydrous (CR2.8 or CR3.0) to extensive recrystallization of primary minerals, including replacement of coarse-grained silicates in chondrules (CR2.0). At the same time, CRs have experienced only minor thermal metamorphism except for rare CR6 samples. Identifying minimally altered CR chondrites is a priority because they preserve (1) relatively pristine records of the solar nebula and (2) minerals and textures at the beginning stages of aqueous alteration. Here we report the petrologic characteristics of Y-791498 and A-881828 as the least aqueously altered CR chondrites in the Japanese NIPR meteorite collection. Previous studies have shown that fine-grained rims on chondrules are indicators of incipient alteration of primitive CR chondrites, there-fore we focus on rims around chondrules in the two meteorites

    Scale-free networks are not robust under neutral evolution

    Full text link
    Recently it has been shown that a large variety of different networks have power-law (scale-free) distributions of connectivities. We investigate the robustness of such a distribution in discrete threshold networks under neutral evolution. The guiding principle for this is robustness in the resulting phenotype. The numerical results show that a power-law distribution is not stable under such an evolution, and the network approaches a homogeneous form where the overall distribution of connectivities is given by a Poisson distribution.Comment: Submitted for publicatio

    Unoccupied topological surface state in Bi2_{2}Te2_{2}Se

    Full text link
    Bias voltage dependent scattering of the topological surface state is studied by scanning tunneling microscopy/spectroscopy for a clean surface of the topological insulator Bi2_2Te2_2Se. A strong warping of constant energy contours in the unoccupied part of the spectrum is found to lead to a spin-selective scattering. The topological surface state persists to higher energies in the unoccupied range far beyond the Dirac point, where it coexists with the bulk conduction band. This finding sheds light on the spin and charge dynamics over the wide energy range and opens a way to designing opto-spintronic devices.Comment: 5 pages, 4 figure

    Virus Propagation in Multiple Profile Networks

    Full text link
    Suppose we have a virus or one competing idea/product that propagates over a multiple profile (e.g., social) network. Can we predict what proportion of the network will actually get "infected" (e.g., spread the idea or buy the competing product), when the nodes of the network appear to have different sensitivity based on their profile? For example, if there are two profiles A\mathcal{A} and B\mathcal{B} in a network and the nodes of profile A\mathcal{A} and profile B\mathcal{B} are susceptible to a highly spreading virus with probabilities βA\beta_{\mathcal{A}} and βB\beta_{\mathcal{B}} respectively, what percentage of both profiles will actually get infected from the virus at the end? To reverse the question, what are the necessary conditions so that a predefined percentage of the network is infected? We assume that nodes of different profiles can infect one another and we prove that under realistic conditions, apart from the weak profile (great sensitivity), the stronger profile (low sensitivity) will get infected as well. First, we focus on cliques with the goal to provide exact theoretical results as well as to get some intuition as to how a virus affects such a multiple profile network. Then, we move to the theoretical analysis of arbitrary networks. We provide bounds on certain properties of the network based on the probabilities of infection of each node in it when it reaches the steady state. Finally, we provide extensive experimental results that verify our theoretical results and at the same time provide more insight on the problem

    Maximum principle and mutation thresholds for four-letter sequence evolution

    Get PDF
    A four-state mutation-selection model for the evolution of populations of DNA-sequences is investigated with particular interest in the phenomenon of error thresholds. The mutation model considered is the Kimura 3ST mutation scheme, fitness functions, which determine the selection process, come from the permutation-invariant class. Error thresholds can be found for various fitness functions, the phase diagrams are more interesting than for equivalent two-state models. Results for (small) finite sequence lengths are compared with those for infinite sequence length, obtained via a maximum principle that is equivalent to the principle of minimal free energy in physics.Comment: 25 pages, 16 figure

    Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi2_{2}Se3_{3}

    Get PDF
    We have performed scanning tunneling microscopy and differential tunneling conductance (dI/dVdI/dV) mapping for the surface of the three dimensional topological insulator Bi2_{2}Se3_{3}. The fast Fourier transformation applied to the dI/dVdI/dV image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.Comment: 5 pages, 4 figure

    Molecular Treatment Of Charge Transfer In Li+ +Ca Collisions

    Get PDF
    The perturbed-stationary-state method, appended with electron translation factors, has been applied to charge transfer in Li+ +Ca collisions for energies from 0.1 to 20 keV/amu. The Born-Oppenheimer wave functions and eigenvalues were generated using the pseudopotential technique, which reduced the many-electron system to a simpler two-electron problem. The molecular ground-state X +1 is calculated to be bound and has the potential-well parameters Re=6.20a0, De=1.11 eV, e=235 cm-1, and Be=0.263 cm-1. From the scattering computations, a representative value for the charge-transfer cross section is 4x10-15 cm2 at 5 keV/amu. The cross section decreases rapidly as the energy is reduced below 1 keV/amu. At all energies studied, the dominant electron-capture reaction product is the ground-state Li atom. © 1983 The American Physical Society
    corecore