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Abstract. A four-state mutation–selection model for the evolution of
populations of DNA-sequences is investigated with particular interest in the
phenomenon of error thresholds. The mutation model considered is the Kimura
3ST mutation scheme, fitness functions, which determine the selection process,
come from the permutation-invariant class. Error thresholds can be found
for various fitness functions, the phase diagrams are more interesting than for
equivalent two-state models. Results for (small) finite sequence lengths are
compared with those for infinite sequence length, obtained via a maximum
principle that is equivalent to the principle of minimal free energy in physics.

1. Introduction

In population genetics, one aims to model the evolution of a population, taking into
account evolutionary forces such as mutation, selection, recombination, or migration,
using either a stochastic formulation, to incorporate the effects of a finite population,
or a deterministic formulation, to emulate the limit of infinite population size. For a
review, see [3].

In this paper, we are concerned with a deterministic mutation–selection model
for a haploid‡ population (or a diploid‡ population without dominance). These types
of models have been subject to investigation in various different settings, see [4]. The
questions one is typically interested in comprise mutation–selection balance, mean
quantities and variances, and the mutation load, i. e., the dependence of the mean
fitness on the mutation rates.

One class of mutation–selection models are sequence space models, where, inspired
by the structure of the DNA, genotypes are modelled as sequences written in a two-
or four-letter alphabet, where each letter stands for one of the purines adenine and
guanine, or the pyrimidines cytosine and thymine (or uracil in the case of RNA
sequences). The majority of work in this field is done for two-state models, where
one state is identified with purines and the other with pyrimidines, or, alternatively,
one stands for a wildtype and the other for a mutant site; results for models that
incorporate the full for-letter structure of the DNA are scarce [12, 10].

‡ Haploid organisms have only one copy of each chromosome, and usually reproduce asexually.
Examples are viruses, bacteria and most fungi. In diploid organisms, the genetic information exists
in two copies, one stemming from the father and one from the mother.
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The advantage of sequence space models is that the mutation process is
straightforward to model. A drawback is, however, that the modelling of the selection
process is less clear. Selection comes in as different reproduction rates that are assigned
to different genotypes. In nature, these are influenced by the phenotype, and the
mapping from genotypes to phenotypes is highly complex, such that any feasible
modelling of selection is necessarily simplistic.

Due to the linear structure and limited alphabet of the DNA, sequence space
models are very similar to some physical models, such as one-dimensional Ising models
or quantum spin chains. In fact, in an appropriate formulation, they are equivalent
to these [19, 2]. The realization of this equivalence made the well developed methods
and tools from statistical physics accessible in the population genetics context. The
analogies between the physical and the biological models are however involved, as the
observables and quantities of interest are slightly different in the different disciplines.
One example for the transfer of knowledge from physics to biology is the derivation of
a maximum principle for the population mean fitness, that finds its analog in physics
in the principle of minimal free energy. This has been shown for a two-state model in
[11], generalised to a four-state model in [10], and derived for a very general class of
evolution models in biology in [1].

Of particular interest is the phenomenon of a mutation driven error threshold.
This phenomenon is based on the antagonistic action of mutation and selection. For
low mutation rates, selection dominates the population, such that its distribution
is going to be clustered around the optimal sequence and thus is well localized in
sequence space. At high mutation rates, on the other hand, mutation outweighs the
effect of selection and the population distribution is an equidistribution in sequence
space, which certainly leads to extinction. If the transition from the localised to the
delocalized population distribution is very sharp and occurs in a very narrow regime
of mutation rates, one speaks of an error threshold. This phenomenon is equivalent
to phase transitions in physics, where the temperature takes the role of the mutation
rate.

The existence of error thresholds in biology has been predicted in the framework
of the quasi-species model [9], and attracted considerable interest ever since [20, 24,
21, 8, 11]. More recently, experimental indications for the existence of error thresholds
in virus population have been reported, see for instance [7, 6].

Existence and properties of the error thresholds depend on the model of selection.
Most theoretical investigations of the error threshold phenomenon are done for two-
state models, the only work considering four-state models we are aware of is [12], and
this is limited to a single fitness function. The results indicate however more involved
phase diagrams than in the two-state case, warranting further investigations.

The scope of this work is to investigate a four-state mutation–selection model
with particular attention for the phase diagrams with a number of different fitness
functions using the maximum principle for the population mean fitness from [10] to
determine the error thresholds.

The outline of the paper is as follows. In section 2, the general setup of our
deterministic mutation–selection model is stated, introducing the quantities of interest.
This is applied to the case of a four-state sequence space model in section 3. Section 4
introduces the major simplification of a permutation invariant fitness and presents the
resulting reduction of the type space. In section 5, we recall the maximum principle
from [10], which is applied to the investigation of error thresholds in section 6. Finally,
we close with our conclusions.
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2. Mutation selection models

The mathematical setup of a deterministic mutation–selection model for a haploid
population (or a diploid one without dominance) in time-continuous formulation is as
follows. Individuals are identified with genotypes, i. e., their fitness (or reproduction
rate) is solely determined by the genotype and thus environmental effects are neglected.
The number of genotypes is finite. In the case of sequences of a fixed length N written
in a four-letter alphabet, there are 4N different sequences and thus genotypes. The
set of genotypes forms the the type space S, which is also called sequence space in
case of sequences as genotypes.

2.1. Population

The population at any time t is described by the frequencies pi of each type i ∈ S,
which are collected in the |S|-dimensional vector p(t), where |S| is the cardinality of
the type space. The population is a probability distribution and normalized such that∑

i pi = 1.

2.2. Evolution of the population

Evolution is modelled in a time-continuous formulation. Mutation and selection are
treated as two independent processes going on in parallel. In this case, the possible
events are birth and death events for each type i, and mutation events from type j to
i, which happen with rates bi, di and mij , respectively. The effective reproduction rate
is given by the difference of birth and death rates, ri = bi−di. The reproduction rates
are collected in the diagonal reproduction matrix R = (ri). Similarly, the mutation
rates are the entries of the mutation matrix M = (mij). The diagonal entries of the
mutation matrix are chosen such that M is a Markov generator and fulfils the condition∑

i Mij = 0. The time evolution operator H is given as the sum of reproduction and
mutation matrix H = R + M.

The evolution of the population is then given by the evolution equation

ṗ(t) = [H− r̄(t)1] p(t) , (1)

where r̄(t) =
∑

i ripi(t) is the population mean fitness, and 1 is the unity matrix.
In equilibrium, ṗ = 0, thus this equation reduces to an eigenvalue equation of

H. All equilibrium quantities shall be denoted by omitting the argument t. So r̄ is
the population mean fitness in equilibrium for instance. Assuming irreducibility for
M, Perron-Frobenius theory [14] applies, which implies that the leading eigenvalue r̄
is non-degenerate, and the corresponding (right) eigenvector p is strictly positive, as
required for a probability distribution.

2.3. Relative reproductive success and ancestral distribution

Similarly to the population distribution, there is another distribution that will prove
important in this model, namely the ancestral distribution.

Figure 1 shows schematically a population evolving in time in terms of a multitype
branching process. The population distribution of this population at any time
(between t and t + τ) is easily accessible by counting the number of lines of each
type (colour) at that time and normalizing it.



Maximum principle for sequence evolution 4

t t+τ
Time

Figure 1. Schematic population: lineages symbolize individuals, colours indicate
their types. Colour changes mark mutation events, whereas branching lines
represent births and ending lines stand for deaths. The thickness of a line at
any time denotes the number of offspring of the individual at time t + τ .

The relative reproductive success zi(τ, t) of type i at time t with respect to t + τ
is proportional to the number of offspring at time t + τ of all individuals of type i at
time t divided by the number of type i individuals at time t. As shown in [11], for
infinite populations in equilibrium (t, τ → ∞), the relative reproductive success z is
given by the left Perron-Frobenius eigenvector of H.

The ancestral distribution a(τ, t) is derived by tracing back each line from t + τ
to t and counting it as the type it is at t, irrespective of its type at t + τ . As this
is a probability distribution, it has to be normalized such that

∑
i ai(τ, t) = 1. Thus

we get ai(τ, t) = zi(τ, t)pi(t), with a suitable normalization of z, cf. [11], such that in
equilibrium the ai are given by both the left and right PF-eigenvectors, z and p.

2.4. Ancestral and population averages

Every quantity, say f , that is assigned to each type i ∈ S can be averaged with
respect to both the ancestral and population distribution. The population mean of f
is defined as

f̄(t) :=
∑

i

fipi(t) , (2)

the population mean fitness from equation (1) is an important example. The ancestral
mean of f is given by

f̂(τ, t) :=
∑

i

fiai(τ, t) . (3)

3. The four-state model

When modelling DNA or RNA evolution, the genotypes become sequences, that are
written in a four-letter alphabet Σ (or binary sequences in a simplified version). Here,
we restrict ourselves to sequences of fixed length N , and thus the sequence space SN

is the set of all four-state sequences s of length N , SN = ΣN with Σ = {A, G, C, T}
and |SN | = 4N .
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Figure 2. Kimura 3ST mutation scheme.

3.1. Mutation model

The only mutation process taken into account is that of single point mutations,
disregarding more complex events such as multiple mutations, deletions or insertions.
This is known as the single step mutation model [22]. Site independent mutation rates
are assumed. With four different nucleotides, there are 12 different replacements of
one by another. The rates for these are specified by the Kimura 3ST mutation scheme

[17, 23], cf. Figure 2, which uses only 3 different mutation rates, µ1, µ2 and µ3.
Common simplifications of this model are the Jukes-Cantor mutation scheme [13],

where all three mutation rates are the same, µk := µ, k = 1, 2, 3 and the Kimura 2

parameter model [16], where µ1 ≡ µ3 := µ, which takes into account only the different
mutation rates for transitions, which are replacements of one of the purines (A or G)
by the other, or of one of the pyrimidines (C or T) by the other, and transversions,
which are replacements of a purine by a pyrimidine and vice versa. This is justified
by the observation that transitions, which occur at rate µ2, are found to have a far
higher rate than the two types of transversions, which happen at similar rates µ1 and
µ3.

A convenient measure for closeness of two sequences is the Hamming distance
dH [25], which counts the number of sites at which two sequences s, s′ differ. In the
single step mutation model, this determines how many mutational steps away from
each other the two sequences are. Using the Kimura 3ST mutation scheme, one needs
a 3-dimensional Hamming distance dH(s, s′), to account for the different types of
mutations. The k-th entry of the Hamming distance, dH, k simply counts the number
of sites at which the sequences s and s′ differ in a way such that they can mutate into
each other with rate µk.

The entries of the mutation matrix are given by

Ms,s′ =





µ1/N for dH(s, s′) = (1, 0, 0)T

µ2/N for dH(s, s′) = (0, 1, 0)T

µ3/N for dH(s, s′) = (0, 0, 1)T

−(µ1 + µ2 + µ3) for s = s′

0 else .

(4)

3.2. Representation of sequences

Defining a reference type, which is usually (but not necessarily) taken to be the
wildtype, i. e., the type with maximal fitness, we can conveniently change the alphabet
Σ from {A, G, C, T} to {0, 1, 2, 3}. This is done by assigning the zero string to the
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reference type, sref = 00 . . . 0. The representation of any other sequence is obtained
relative to the reference type. Comparing a sequence s with the wildtype sref , we
assign 0 to s at each site where the two sequences match; at sites where they differ,
we assign 1, 2 or 3, depending on the type of mutation (determined by the respective
mutation rate).

Using this representation we can define the mutational distance d as the 3-
dimensional Hamming distance to the wildtype,

d =




d1

d2

d3


 =




#1
#2
#3


 (5)

with 0 ≤ d1, d2, d3 and the total mutational distance d =
∑3

k=1
dk ≤ N . The number

of wildtype sites is given by d0 = N − ∑3

k=1
dk. The mutational distance determines

how many mutational steps of each type a sequence is away from the wildtype.

4. Permutation invariant fitness model

Whereas the mutation model is well justified on the microscopic level, the picture
is different for the reproduction rates. Only little is known about the nature of
realistic fitness functions, and any realistic fitness function would be highly complex
and probably too hard to tackle analytically. Usually, the choice of fitness function is
determined rather by feasibility than by closeness to reality.

One rather common, though often implicitly used, assumption is that of a
permutation-invariant fitness function. This means that the reproduction rate of a
sequence depends only on its mutational distance to the wildtype, not on the order of
the sequence and implies that all sequences with the same mutational distance have
the same fitness.

Of course this assumption is highly unrealistic, as in nature the location of
a mutation (whether it lies in a coding or non-coding region of the genome, for
instance) will certainly influence the fitness. Having said that, the accumulation of
many mutations with small effects on the fitness is described surprisingly well by
a permutation-invariant fitness. In contrast to, for instance, magnetic systems in
physics, where the interactions are rather short ranged, and therefore next-neighbour
interactions seem more appropriate than permutation-invariant ones, in the genome
the interactions are typically long-ranged, and therefore the permutation-invariant
fitness is a natural choice.

For a permutation-invariant fitness, we can reduce the dimensions of the type
space by a procedure that is known as lumping in the theory of Markov chains ([15],
Chapter VI). The essence here is that multiple classes are lumped together in one
class, such that a new Markov process with fewer classes emerges. In our case we
want to lump together all sequences with the same fitness, such that the lumped
types are determined by the mutational distance d. This implies that the lumping is
compatible with the mutation scheme, which imposes the structure on the type space.

4.1. The mutational distance space

The sequence space S contains all {0, 1, 2, 3}-sequences s of length N , S = ΣN , and
thus |S| = 4N . The neighbourhood or structure of this space is determined by the
mutation model: Two sequences are neighbours if and only if they can mutate into
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one another with a single mutational step, i. e. they differ only at a single site. Thus
each sequence has 3N neighbours as there are N sites and three types of mutation at
each site.

The lumped type space, or mutational distance space S contains the (N +1)(N +
2)(N + 3)/6 different mutational distances d. Going from the original sequence space
S to the mutational distance space S, the neighbourhood is maintained, i. e., those
and only those sequences s′ that are neighbours of a particular sequence s are in classes
d′ that are neighbours of d, the mutational distance of s. As S contains all possible
mutational distances d, it can be visualized as a simplex in N

3.
Describing the neighbourhood of the mutational distances, it is useful to classify

the sites of a sequence into wildtype and mutant sites, where the wildtype sites are
those denominated by 0, whereas the mutant sites are the 1, 2, 3-sites. A mutation at a
wildtype site changes this site to a mutant site and thus increases the total mutational
distance d to d′ = d + 1. This is symbolised by

d → d′ = d + ek with ek =





(1, 0, 0)T for k = 1

(0, 1, 0)T for k = 2

(0, 0, 1)T for k = 3 .

(6)

These mutations occur at rate µkd0/N .
For a mutation at a mutant site, there are two possibilities. Firstly, it can be a

mutation from type k back to the wildtype with rate µk and thus decrease the total
mutational distance; in this case the mutational direction is given by −ek with the
ek from equation (6). Secondly, it can be a mutation to another type of mutant site,
which does not change the total mutational distance d, but changes the components
of the mutational distance d to d′ = d ± e+k,−` with

e+k,−` =





(1,−1, 0)T for k = 1, ` = 2

(1, 0,−1)T for k = 1, ` = 3

(0, 1,−1)T for k = 2, ` = 3

. (7)

These mutations happen at rate µmd`/N and µmdk/N , with {k, `,m} = {1, 2, 3},
respectively.

4.2. The lumped reproduction and mutation matrices

As we assume that fitness is permutation invariant and we lump together all sequences
with the same mutational distance, the lumped reproduction matrix R is diagonal,
too, and it is easily obtained as Rd = Rs with d = d(s).

The lumped mutation matrix M differs more from the original M. The only
nonzero entries (apart from the diagonal) are the mutation rates between neighbouring
mutational distances. They are given by

d → d + ek : Md+ek,d = µkd0/N

d → d − ek : Md−ek,d = µkdk/N

d → d + ek − e` : Md+ek−e`,d = µmd`/N

(8)

with {k, `,m} = {1, 2, 3}, taking into account the number of different sites at which
the mutation can take place with the same effect. Using the same diagonal entries as
in M, i. e., Md,d = −∑

k µk, the mutation matrix is still a Markov generator. Note
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that M is, however, not symmetric in contrast to M. For details of the lumping
procedure, see [15, 10].

The lumped time evolution operator H is as before given as the sum of
reproduction and mutation matrix, H = R + M . In the lumped system, the evolution
equation takes the same form as before (see equation (1)).

4.3. Reversibility of M

The equilibrium distribution (or PF-eigenvector) π of M is given by the number of
sequences lumped into each mutational distance,

πd =

(
N

d0, d1, d2, d3

)
=

N !

d0!d1!d2!d3!
. (9)

Thus πd+ek
= πd d0/(dk + 1) and similarly for other mutational steps. Using this, it

can easily be verified that M is reversible (i. e., the detailed balance holds),

Md,d′πd′ = Md′,dπd , (10)

and as R is diagonal, this holds likewise for H: Hd,d′πd′ = Hd′,dπd.

5. Maximum principle

One of the quantities of main interest is the population mean fitness in equilibrium,
r̄, which is given by the leading eigenvalue of H. In principle, this can be obtained by
Rayleigh’s variational principle. Here, this is however not useful, as the optimization
would have to be carried out over a space of dimension (N + 1)(N + 2)(N + 3)/6.
Using the assumption of a permutation-invariant fitness and the lumped Markov chain,
Rayleigh’s principle can be reduced to an optimization over a single scalar in the case
of binary sequences [11], or over the three components of the mutational distance our
case of four-state sequences [10]. A general reduction of Rayleigh’s principle is derived
in [1]. Here, we shall briefly repeat the derivation of the maximum principle.

5.1. Symmetrization of H

Due to the reversibility of M , the time-evolution operator H can be symmetrized by
the means of a diagonal transformation,

H̃ = Π−1/2HΠ1/2 (11)

using the mutational equilibrium Π = diag{πd}. H̃ has the same spectrum as H.

The off-diagonal entries of H̃ are given by the symmetrized mutation rates

H̃d,d′ = M̃d,d′ = Md,d′

√
π

d′

πd

=
√

Md,d′Md′,d. The symmetrized mutation rates

are thus explicitly given by

d → d + ek : M̃d+ek,d =
µk

N

√
d0(dk + 1)

d → d − ek : M̃d−ek,d =
µk

N

√
dk(d0 + 1)

d → d + ek − e` : M̃d+ek−e`,d =
µm

N

√
d`(dk + 1) .

(12)

The diagonal entries of H are unchanged by this transformation.



Maximum principle for sequence evolution 9

5.2. Splitting up H̃

The next step is to split up the symmetrized time-evolution operator H̃ into the sum
of a Markov generator and a diagonal matrix that contains the remainder,

H̃ = E + F (13)

with F being the (symmetric) Markov generator and E being the (diagonal)
remainder. Clearly, the off-diagonal entries of F are given by the symmetrized

mutation rates, Fd′,d = M̃d′,d. For F to be a Markov generator, we need
∑

d′ Fd′,d =
0, and hence the diagonal entries are given by

Fd,d = −
∑

d′ 6=d

Fd′,d = −
∑

k

µk/N
[√

d0(dk + 1) +
√

dk(d0 + 1)
]

−
∑

k,`

k>`

µm/N
[√

d`(dk + 1) +
√

dk(d` + 1)
]

,
(14)

using the mutation rates (12). The entries of E are given by

Ed = Rd + Md,d − Fd,d . (15)

5.3. The maximum principle

In the limit N → ∞ the matrices E and F can be approximated by functions E and
Fξ

Ed = E(xd) + O

(
1

N

)
and Fd′,d = F±ξ(xd) + O

(
1

N

)
, (16)

where the xd are normalized mutational distances xd = d/N with 0 ≤ xk,
∑3

k=1
xk ≤

1 and the ξ labels the possible directions of mutation k or +k,−` with k, ` ∈ {1, 2, 3}
and k > `. Fd,d′ = 0 for non-neighbouring sequences d,d′.

Using the normalized mutational distances x, we get also a normalized version of
the mutational distance space, S ⊂ R

3, where the points become dense in the limit
N → ∞.

The F±ξ(x) are given approximately by the symmetrized mutation rates as

F±k(x) ≈ µk
√

x0xk , F±k∓`(x) ≈ µm
√

x`xk , (17)

with the fraction of the wildtype sites x0 = 1 − ∑
k xk and {k, `,m} = {1, 2, 3}. For

E(x) we have

E(x) = r(x) − g(x) (18)

with the fitness function Rd = r(xd) + O( 1

N ) and the mutational loss function

g(x) :=
∑

k

µk


1 − 2

√
x0xk − 2

∑

`,m6=k

`>m

√
x`xm


 . (19)

According to [1], Theorem 1, the population mean fitness in equilibrium is then
given by the maximum principle

r̄ = sup
x

[r(x) − g(x)] + O( 1

N ) , (20)

where the supremum is assumed at the ancestral mean mutational distance x̂, if E(x)
assumes its maximum in the interior of S (which is the generic case).
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Figure 3. Example of a phase transition for Kimura 2 parameter mutation
scheme with µ = 2µ2 and a quadratic symmetric fitness r(x) = −

∑
k

xk +∑
k≤`

xkx`.

5.3.1. Validity. The maximum principle is exact in the limit N → ∞ as well as in
the case of a linear fitness function r(x) and for unidirectional mutation rates, which
is not the case for our mutation model. For finite N (and non-linear fitness function),
it is correct up to O

(
1

N

)
[1].

6. Mutation thresholds

6.1. The phenomenon

Analogously to the temperature-driven phase transition in physics, for certain choices
of fitness functions one can observe the phenomenon that the order of the population
breaks down at a critical mutation rate, and for any mutation rates higher than this,
the population is delocalized in sequence space. In the population genetics context,
this phenomenon is known as mutation-driven error threshold.

We define the phenomenon of the mutation threshold for systems with infinite
sequence length N → ∞ as a critical mutation rate µc = (µ1,c, µ2,c, µ3,c), at which
there is a kink in the equilibrium population mean fitness r̄ and a discontinuity in
the ancestral mean mutational distance x̂, cf. the definition of the fitness-threshold
in [11]. As this is a collective phenomenon, for finite sequence length, the transitions
are smoothed out, and the critical mutation rates may be shifted a bit. Using the
maximum principle (20), however, we can detect the discontinuities in x̂, as this is
exact in the limit N → ∞.

Figure 3 shows an example of an error threshold for the Kimura 2 parameter
mutation model with µ = 2µ2 and a quadratic symmetric fitness

r(x) = −
3∑

k=1

xk +
3∑

k,`=1

k≤`

xkx` . (21)

As the fitness function is symmetric with respect to the xk, and the K2P mutation
scheme breaks the symmetry only between x2 vs. x1, x3, in equilibrium we have
x̂1 = x̂3.
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In Figure 3, one can see the decline in population mean fitness for mutation
rates below the critical rate, which goes in line with an increase in ancestral mean
mutational distance x̂. At the critical mutation rate, µ2,c ≈ 0.26, the population
mean fitness has a kink, and the ancestral mean mutational distance x̂ jumps to the
completely random mutational distance with x̂0 = x̂1 = x̂2 = x̂3 = 1

4
, where it stays

for all higher mutation rates, and consequently, the population mean fitness r̄ stays
constantly at its minimum value.

6.2. Choice of fitness functions

Error thresholds do not occur for all fitness functions, but only for some classes. For
two-state models, there exist criteria for fitness functions to give rise to error thresholds
[11]. For our four-state model, it is plausible to assume that the situation is similar.

It is easy to verify for the four-state model, that there can be no error thresholds
for linear fitness functions. For a fitness function to give rise to error thresholds,
one needs at least the complexity of a quadratic function. In the following, we will
investigate two examples of fitness functions displaying error thresholds, namely a
quadratic fitness function and a truncation selection, where all genotypes with less
than a critical number of mutations are equally fit and all others equally unfit.

For simplicity, we will limit ourselves in our examples to the Kimura 2 parameter
(K2P) and Jukes-Cantor (JC) mutation schemes as simplifications of the full Kimura
3ST mutation scheme, and restrict the choice of fitness functions to those that are
symmetric with respect to the xk, k ∈ {1, 2, 3}.

6.3. Quadratic symmetric fitness function

It can be shown that for quadratic fitness functions with positive epistasis, i. e.,
fitness functions with negative second derivatives, there exist no phase transitions (cf.
[12]). Looking only at quadratic symmetric fitness functions with negative epistasis
(or positive second derivative), a fairly general form is

r(x) = c

3∑

k=1

xk +

3∑

k,`=1

k≤`

xkx` . (22)

Here, the parameter c is used to tune the linear part relative to the quadratic term.
The only possible generalization within our restricted setup would be to give different
coefficients for the pure quadratic terms x2

k and the mixed quadratic terms xkx` with
k 6= `. We will however concentrate on the fitness given in equation (22).

In general, this fitness is symmetric with respect of the xk, k ∈ {1, 2, 3}. For
c = −1, the symmetry of the fitness function is even higher and includes the fraction
of the wildtype-sites, x0 = 1 − ∑3

k=1
xk. This is the fitness function that has been

used for the example of an error threshold in Figure 3.
As the K2P mutation model has an inherent symmetry between x1 and x3,

and between x2 and x0, respectively, and the fitness function (22) for arbitrary c is
symmetric with respect to the xk, k ∈ {1, 2, 3}, it is evident that the equilibrium
solution for the ancestral mean mutational distance mirrors that symmetry with
x̂1 = x̂3 (and in the case of c = −1, also x̂2 = x̂0). Figure 4 shows the quadratic
symmetric fitness function (22) for c = −1 as a projection onto the relevant subspace
where x1 = x3. The additional symmetry in the case c = −1 can be seen from the
fact that there are two equally high maxima at (x1, x2) = (0, 0) and (x1, x2) = (0, 1).
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Figure 4. The quadratic symmetric fitness function (22) for c = −1 as a
projection onto the relevant subspace with x1 = x3.

6.3.1. Phase diagrams. We have examined the phase diagrams for the K2P mutation
model with the quadratic symmetric fitness function (22) for the possible combinations
of mutation rates and the parameter c.

For the case c = −1, the phase diagram is shown in Figure 5, cf. [12], where a
different notation, but the same fitness and mutation model are used. Here, we can
identify 3 different phases:

• The AGCT phase. The population is essentially ordered, i. e., the population
distribution is localized in sequence space.

• The disordered phase. The population is completely random, the population
distribution is the equidistribution in sequence space, the ancestral mean
mutational distance is given by x̂0 = x̂1 = x̂2 = x̂3 = 1

4
.

• The PP phase. A partially ordered phase, which only differentiates between
purines and pyrimidines. In the ancestral distribution, there are two peaks that
are equidistributions with respect to x1, x3– and x0, x2–direction, respectively,
but localized in the other directions. This phase only exists in the case c = −1.

If the symmetry between x0 and x2 is broken, i. e., c 6= −1, the PP phase
disappears, see Figures 6 and 7 for c ≤ −1 and c ≥ −1, respectively.

For c < −1, cf. Figure 6, the second order phase transitions disappear immediately
with the broken symmetry, the 1st order phase transition lines shrink with decreasing
c while shifting to slightly higher mutation rates and disappear for any c ≤ −1.06. The
disappearance of the 2nd order transitions implies a disappearance of the disordered
and the PP phase, leaving only an AGCT phase with varying degrees of order.

In the case c > −1, cf. Figure 7, the PP phase merges with the disordered phase,
such that only the AGCT and disordered phases remain. The second order phase
transition between AGCT and PP phase in the case c = −1 is transformed to a first
order transition.
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Figure 5. Phase diagram for the K2P mutation model and the quadratic
symmetric fitness function (22) with c = −1. At the first order phase transition
(solid line) the ancestral mean mutational distance x̂ jumps and the population
mean fitness r̄ has a kink, whereas at the second order phase transitions (dashed
lines) this kink in r̄ is reduced to a kink in its first derivative and the jump in x̂

is reduced to an infinite derivative at the critical mutation rate.

6.3.2. Finite size effects. Using the maximum principle (equation (20)), only the
population mean fitness r̄ and the ancestral mutational distance x̂ are accessible, which
is sufficient to detect phase transitions. For small sequence length, it is however feasible
to calculate r̄ as largest eigenvalue and the population and ancestral distributions p

and a through the corresponding eigenvector of H̃ .
Figure 8 shows results obtained this way for different finite sequence lengths using

the quadratic fitness function (22) with parameter c = −1 compared with the results
obtained via maximum principle (20), which are exact for an infinite system. On
the left, the JC mutation model was used, and consequently, the mean mutational
distances in all three directions coincide. On the right, the K2P mutation model with
µ = 0.3µ2 was used. Here, the mean mutational distances in x1 and x3 direction
coincide, but differ from those in x2 direction.

In Figure 8 one can clearly see how the phase transitions, which are very sharp in
the infinite system, are smoothed out for finite sequence length. Especially the second
order phase transition in the K2P model cannot be detected at the sequence lengths
considered here.

6.3.3. Distributions. The results in Figure 8 have been obtained by calculating the
population and ancestral distributions explicitly. Examples of these are visualized in
Figures 9 to 11. Although for the mean mutational distance we have x1 = x3 and
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Figure 6. Phase diagram for the K2P mutation model and the quadratic
symmetric fitness function (22) with c ≤ −1.
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Figure 7. Phase diagram for the K2P mutation model and the quadratic
symmetric fitness function (22) with c > −1.
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Figure 8. Comparison of population mean fitness r̄, ancestral mean mutational
distance x̂ and population mean mutational distance x̄ for different sequence
length and the infinite system with fitness function (22) with c = −1. Left: JC
mutation scheme, right: K2P mutation scheme with µ = 0.3µ2. The locations of
the phase transitions are marked as vertical dotted lines.
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Figure 9. Ancestral distribution a for the JC mutation model with quadratic
symmetric fitness (22) and c = −1 for selected mutation rates for a sequence
length of N = 20. The frequency of each type d is symbolized by a cube of
proportional size. Colours indicate the position along the x2 direction. For easier
recognition, each cube corresponds to a block of 8 data points.

therefore can reduce the sequence space to the 2-dimensional subspace, sequences with
x1 6= x3 do occur in the equilibrium distributions with non-zero frequency, and thus
we need the full three-dimensional mutational distance space S for the visualization.
In Figures 9 to 11, the frequency of each point d is visualized as a cube of proportional
size. For easier recognition, each cube corresponds to a block of 8 data points. The
colours of the cubes indicate their position along the x2 direction.

Figure 9 shows the ancestral distribution of the JC mutation model with the
quadratic symmetric fitness function (22) with parameter c = −1. The phase
transition, which happens around a mutation rate of µ ≈ 0.16, is clearly visible.
For lower mutation rates, the population is in the AGCT phase and the ancestral
distribution is localized. For mutation rates beyond the threshold, the population is in
the disordered phase and the ancestral distribution is the equidistribution in sequence
space. Note that the term equidistribution refers to the 4N -dimensional sequence space
S, and thus we have a multinomial distribution in the depicted mutational distance
space S.

In Figure 10, the population distributions for the same model and parameter
values as in Figure 9 are shown. The population distribution goes through the same
stages as the ancestral distribution, but at lower mutation rates, and in contrast to
the ancestral distribution, the transition is smooth, as can be seen already in Figure
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Figure 10. Population distribution p for the JC mutation model with fitness
(22) and c = −1 for selected mutation rates for a sequence length of N = 20. For
easier recognition, each cube corresponds to a block of 8 data points.

8.
Figure 11 shows the ancestral distribution for the K2P mutation model with

µ = 0.3µ2 and fitness function (22) with c = −1. Here, the population starts in
the AGCT phase (mutation rates µ2 < 0.3) and goes through the PP phase (at
µ2 = 0.325), where the distribution constists of two “rods”, which are each an
equidistribution with respect to the x2, x0 or the x3, x1 direction, respectively, and
localized with respect to the remaininig directions. For high mutation rates, we find
again the equidistribution of the disordered phase (µ2 > 0.4).
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Figure 11. Ancestral distribution a for the K2P mutation model with µ = 0.3µ2

with fitness (22) and c = −1 for selected mutation rates for a sequence length of
N = 20. For easier recognition, each cube corresponds to a block of 8 data points.
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Figure 12. Truncation selection (23) for xc = 0.1 as a projection on the subspace
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Figure 13. Left: Phase diagram for truncation selection (23) with different
values of xc. Right: Critical mutation rate µc against xc for truncation selection
(23) and the JC mutation model.

6.4. Truncation selection

Another fitness we are interested in is truncation selection, a case of extreme epistasis,
both positive and negative. We use it in the form

r(x) =

{
1 if

∑
k xk ≤ 3xc

0 if
∑

k xk > 3xc .
(23)

Figure 12 shows a projection of the truncation selelction (23) with xc = 0.1 onto the
subspace x1 = x3.

This is a generalization of the single-peaked landscape, where one single genotype
is of high fitness and all others are equally unfit. The single peaked landscape has
been widely used as an oversimplistic toy model. It has first been suggested in the
context of prebiotic evolution [9] and corresponds to xc = 0 in our setting. Truncation
selection with non-zero xc, however, is a standard model in biology, e. g. [18].

6.4.1. Phase diagram. On the left, Figure 13 shows the phase diagram for truncation
selection (23) with different values of xc. Here, we find error thresholds for all values
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of xc < 1

4
. For values of xc ≥ 1

4
, the point of the mutation equilibrium, x = ( 1

4
, 1

4
, 1

4
),

is included in the high plateau and thus the population will be in mutation equilibrium
and at optimal fitness simultaneously for any mutation rate. On the right, Figure 13
shows the dependence of the critical mutation rate on xc in the JC mutation model.
At xc = 1

4
, the critical mutation rate diverges.

6.4.2. Finite size effects. Figure 14 compares the results for truncation selection
obtained via the maximum principle (20) (N = ∞) with those obtained by calculating
the largest eigenvalue and corresponding eigenvector of the symmetrized time-

evolution operator H̃ for finite sequence length analogously to the data shown in
Figure 8 for the quadratic symmetric fitness (22). On the left, one sees the data for
the JC mutation scheme, whereas on the right, the results for the K2P model with
µ = 0.3µ2 are shown. Here, it is obvious that even for rather small sequence length,
the error thresholds are very sharp. However, keeping in mind the discontinuity of the
truncation selection, this is not too surprising. One can see that the location of the
error threshold does depend on the sequence length: The smaller the sequence length
N , the more the error threshold is shifted to lower mutation rates. So although the
sequence lengths considered here are large enough to warrant a sharp error threshold,
they are too small to predict the location of the error threshold in the infinite system.

6.4.3. Distributions. In the same way as for the quadratic symmetric fitness function
(22), the ancestral and population distributions have been calculated for the truncation
selection (23) and are shown in Figures 15 and 16. In contrast to Figures 9 to 11, which
are the equivalent diagrams for the quadratic symmetric fitness function, every point
in the sequence space is displayed as a separate cube, whose size is proportional to the
fraction of individuals having that type in the ancestral and population distributions,
respectively.

Figure 15 shows the ancestral distribution of a system with sequence length
N = 20 and the JC mutation scheme for mutation rates close to the error threshold.
For mutation rates below the threshold (µ ≤ 0.86), the ancestral distribution is an
equidistribution in the “fit” part of the sequence space, where

∑
k xk ≤ xc and thus

r = 1. For mutation rates above the threshold (µ ≥ 0.95), the ancestral distribution is
the equidistribution in the whole sequence space. The transition at the threshold
is however interesting. Here, the distribution does not move smoothly from one
equidistribution to the other, but in the intermediate states, the ancestral distribution
is a superposition of the two equidistributions with an increasing proportion of the
equidistribution on the whole sequence space.

Figure 16 shows the population distribution for a system with the same
parameters as shown in Figure 15, i. e., JC mutation model and truncation selection
(23) with xc = 0.1 and sequence length N = 20. Here, the transition from a
localized distribution for small mutation rates to the equidistribution in sequence
space looks far smoother (even apart from the far broader range of mutation rates
over which it happens). The distribution as a whole shifts its centre until it reaches
the equidistribution.

As the situation is very similar for general K2P mutation model (apart from
a difference in mutation rates, cf. Figure 13, left), no distributions for a case with
different mutation rates are shown.
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Figure 14. Comparison of population mean fitness r̄, ancestral mean mutational
distance x̂ and population mean mutational distance x̄ for different sequence
lengths and the infinite system with truncation selection (23) with xc = 0.1. Left:
JC mutation scheme, right: K2P mutation scheme with µ = 0.3µ2. The locations
of the error thresholds in the infinite system are marked as vertical dotted lines.
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Figure 15. Ancestral distribution a for the JC mutation model with truncation
selection (23) and xc = 0.1 with a sequence length of N = 20 for mutation rates
µ close to the error threshold.

7. Conclusion

In this paper we presented the model for sequence evolution introduced in [12], which
takes into account the four-letter structure of DNA sequences. In [10], a maximum
principle to determine the population mean fitness has been derived for this model,
which is equivalent to the principle of minimum free energy in physical systems. Here,
we used this maximum principle to investigate the phenomenon of error thresholds
that are driven by mutation rate for a number of models.

The general mutation model in our setup is the Kimura 3ST mutation scheme,
where it is accounted for one mutation rate for transitions and two mutation rates for
the different types of transversions. In the analysis of the phase diagrams we focused
on 2 simplifications of this model: Firstly, the Kimura 2 parameter model, where the
two mutation rates for transversions are taken to be identical, and secondly, the Jukes-
Cantor mutation model as a special case of the Kimura 2 parameter model where all
three mutation rates coincide.

Inherent in our setup, there is a restriction to permutation-invariant fitness
functions, where the fitness depends only on the number of mutations, i. e., the
mutational distance d, not on their position in the sequence. In principle, it is
possible to consider any fitness function from this permutation-invariant class within
our framework. Not all possible fitness functions give rise to error thresholds, for
instance, with non-epistatic fitness functions, i. e., functions that are linear in the
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Figure 16. Population distribution p for the JC mutation model with truncation
selection (23) and xc = 0.1 with a sequence length of N = 20 for varying mutation
rates µ.

mutational distance d, there exist no error thresholds. Here, we have focused on
two simple examples of fitness functions that do cause error thresholds, namely (i) a
fairly general quadratic symmetric (with respect to the components of the mutational
distance di) fitness function and (ii) a truncation selection.

For these fitness functions, error thresholds can be found for certain parameter
values. It has been argued (e. g. [5]), that the error threshold phenomenon, which
was first described for a model with single-peaked landscape, might be an artefact of
this highly unrealistic fitness function. Our results show, however, that they are not
limited to this fitness, but occur for different types of fitness functions both smooth
(the quadratic fitness) and discontinuous (truncation selection) ones. A certain degree
of complexity is however needed for error thresholds, as there are none for a linear
fitness. Therefore one can expect that more realistic fitness landscapes, which are more
rugged and not of the permutation-invariant type, might show a rich error threshold
behaviour. Hence error thresholds are a phenomenon that plays a role in evolution,
as supported by recent experimental data [7, 6].

Apart from the ordered and disordered phases, which also occur in two-state
models, a partially ordered phase has been observed [12], which differentiates only
between purines and pyrimidines. This phase is directly dependent on the four-state
nature of our model. However, as our analysis has shown, it is as well dependent on
a certain symmetry of the fitness function, which comes naturally in the equivalent
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physical systems, but seems rather artificial in the biological setting, indicating that
this phase, interesting though it may be, is of little significance in biology.
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