1,295 research outputs found

    Electrochemical Investigation of High-Performance Dye-Sensitized Solar Cells Based on Molybdenum for Preparation of Counter Electrode

    Get PDF
    In order to improve the photocurrent conversion efficiency of dye-sensitized solar cells (DSSCs), we studied an alternative conductor for the counter electrode and focused on molybdenum (Mo) instead of conventional fluorine-doped tin oxide (FTO). Because Mo has a similar work function to FTO for band alignment, better formability of platinum (Pt), and a low electric resistance, using a counter electrode made of Mo instead of FTO lead to the enhancement of the catalytic reaction of the redox couple, reduce the interior resistance of the DSSCs, and prevent energy-barrier formation. Using electrical measurements under a 1-sun condition (100 mW/cm(2), AM 1.5), we determined that the fill factor (FF) and photocurrent conversion efficiency (eta) of DSSCs with a Mo electrode were respectively improved by 7.75% and 5.59% with respect to those of DSSCs with an FTO electrode. Moreover, we have investigated the origin of the improved performance through surface morphology analyses such as scanning electron microscopy and electrochemical analyses including cyclic voltammetry and impedance spectroscopy

    FESD: a Functional Element SNPs Database in human

    Get PDF
    We have created the Functional Element SNPs Database (FESD) that categorizes functional elements in human genic regions and provides a set of single nucleotide polymorphisms (SNPs) located within each area. In the FESD, the human genic regions were divided into 10 different functional elements, such as promoter regions, CpG islands, 5ā€²-untranslated regions (5ā€²-UTRs), translation start sites, splice sites, coding exons, introns, translation stop sites, polyadenylation signals and 3ā€²-UTRs, and subsequently, all the known SNPs were assigned to each functional element at their respective position. With the FESD web interface, users can select a set of SNPs in the specific functional elements and get their flanking sequences for genotyping experiments, which will help in finding mutations that contribute to the common and polygenic diseases. A web interface for the FESD is freely available at http://combio.kribb.re.kr/ksnp/resd/

    Dermoscopic Features of Schwannoma

    Get PDF

    UNCERTAINTY PROPAGATION ANALYSIS FOR YONGGWANG NUCLEAR UNIT 4 BY MCCARD/MASTER CORE ANALYSIS SYSTEM

    Get PDF
    This paper concerns estimating uncertainties of the core neutronics design parameters of power reactors by direct sampling method (DSM) calculations based on the two-step McCARD/MASTER design system in which McCARD is used to generate the fuel assembly (FA) homogenized few group constants (FGCs) while MASTER is used to conduct the core neutronics design computation. It presents an extended application of the uncertainty propagation analysis method originally designed for uncertainty quantification of the FA FGCs as a way to produce the covariances between the FGCs of any pair of FAs comprising the core, or the covariance matrix of the FA FGCs required for random sampling of the FA FGCs input sets into direct sampling core calculations by MASTER. For illustrative purposes, the uncertainties of core design parameters such as the effective multiplication factor (keff), normalized FA power densities, power peaking factors, etc. for the beginning of life (BOL) core of Yonggwang nuclear unit 4 (YGN4) at the hot zero power and all rods out are estimated by the McCARD/MASTER-based DSM computations. The results are compared with those from the uncertainty propagation analysis method based on the McCARD-predicted sensitivity coefficients of nuclear design parameters and the cross section covariance data

    Cupping for Treating Pain: A Systematic Review

    Get PDF
    The objective of this study was to assess the evidence for or against the effectiveness of cupping as a treatment option for pain. Fourteen databases were searched. Randomized clinical trials (RCTs) testing cupping in patients with pain of any origin were considered. Trials using cupping with or without drawing blood were included, while trials comparing cupping with other treatments of unproven efficacy were excluded. Trials with cupping as concomitant treatment together with other treatments of unproven efficacy were excluded. Trials were also excluded if pain was not a central symptom of the condition. The selection of studies, data extraction and validation were performed independently by three reviewers. Seven RCTs met all the inclusion criteria. Two RCTs suggested significant pain reduction for cupping in low back pain compared with usual care (P < .01) and analgesia (P < .001). Another two RCTs also showed positive effects of cupping in cancer pain (P < .05) and trigeminal neuralgia (P < .01) compared with anticancer drugs and analgesics, respectively. Two RCTs reported favorable effects of cupping on pain in brachialgia compared with usual care (P = .03) or heat pad (P < .001). The other RCT failed to show superior effects of cupping on pain in herpes zoster compared with anti-viral medication (P = .065). Currently there are few RCTs testing the effectiveness of cupping in the management of pain. Most of the existing trials are of poor quality. Therefore, more rigorous studies are required before the effectiveness of cupping for the treatment of pain can be determined

    Performance-Based Multiobjective Optimal Seismic Retrofit Method for a Steel Moment-Resisting Frame Considering the Life-Cycle Cost

    Get PDF
    This study proposes a performance-based multiobjective optimization seismic retrofit method for steel moment-resisting frames. The brittle joints of pre-Northridge steel moment-resisting frames are retrofitted to achieve ductility; the method involves determining the position and number of connections to be retrofitted. The optimal solution is determined by applying the nondominated sorting genetic algorithm-II (NSGA-II), which acts as a multiobjective seismic retrofit optimization technique. As objective functions, the initial cost for the connection retrofit and lifetime seismic damage cost were selected, and a seismic performance level below the 5% interstory drift ratio was employed as a constraint condition. The proposed method was applied to the SAC benchmark three- and nine-story buildings, and several Pareto solutions were obtained. The optimized retrofit solutions indicated that the lifetime seismic damage cost decreased as the initial retrofit cost increased. Although every Pareto solution existed within a seismic performance boundary set by a constraint function, the seismic performance tended to increase with the initial retrofit cost. Analysis and economic assessment of the relations among the initial retrofit cost, lifetime seismic damage cost, total cost, and seismic performance of the derived Pareto solution allow building owners to make seismic retrofit decisions more rationally

    Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

    Get PDF
    Fischer-Tropsch synthesis (FTS) reaction from syngas was investigated on the Pt-promoted cobalt-based hybrid catalysts prepared by co-precipitation method in a slurry of ZSM-5 (Si/Al=25). The hybrid catalysts were compared with each other for the different content of Pt as a promoter and are characterized using BET, XRD, H2-TPR and NH3-TPD. Their physicochemical properties were correlated with the activity and selectivity of the catalysts. As results, all hybrid catalysts show the C5-C9 yield (%) higher than that of Co-Al2O3/ZSM-5 catalyst. The Pt-promoted hybrid catalysts were found to be more promising towards production of the hydrocarbons of gasoline range and over C10.

    EFFECTIVE DOSE MEASUREMENT FOR CONE BEAM COMPUTED TOMOGRAPHY USING GLASS DOSIMETER

    Get PDF
    During image-guided radiation therapy, the patient is exposed to unwanted radiation from imaging devices built into the medical LINAC. In the present study, the effective dose delivered to a patient from a cone beam computed tomography (CBCT) machine was measured. Absorbed doses in specific organs listed in ICRP Publication 103 were measured with glass dosimeters calibrated with kilovolt (kV) X-rays using a whole body physical phantom for typical radiotherapy sites, including the head and neck, chest, and pelvis. The effective dose per scan for the head and neck, chest, and pelvis were 3.37Ā±0.29, 7.36Ā±0.33, and 4.09Ā±0.29 mSv, respectively. The results highlight the importance of the compensation of treatment dose by managing imaging dose
    • ā€¦
    corecore