13 research outputs found

    ZODIACAL EXOPLANETS in TIME (ZEIT). III. A SHORT-PERIOD PLANET ORBITING A PRE-MAIN-SEQUENCE STAR in the UPPER SCORPIUS OB ASSOCIATION

    Get PDF
    We confirm and characterize a close-in (Porb = 5.425 days), super-Neptune sized (5.04-0.37 +0.34 R⊕) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the ScorpiusCentaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet's properties and constrain the host star's density. We determine K2-33's bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within ∼10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planetplanet scattering is not responsible for all short-period planets

    Dynamics of 1,3-diphenylpropane tethered to the interior pore surfaces of MCM-41

    No full text
    The diffusive motions of covalently tethered 1,3-diphenylpropane (DPP) via a silyl-aryl-ether linkage in the mesopores of MCM-41 were studied by quasielastic neutron scattering. The geometric effect of pore radius was investigated with samples having pores that ranged from 1.6 to 3.0 nm in diameter and highest achievable DPP grafting density. The effect of molecular crowding was investigated in 3.0 rim diameter pores for surface coverage ranging from 0.60 to 1.61 DPP/nm(2). Temperature dependence was determined for large pore diameter samples from 240 to 370 K. As the DPP molecules remain attached over this entire temperature range, data were analyzed in terms of a model of localized diffusion inside a sphere. Only the motions of the DPP hydrogen atoms were considered because of the high sensitivity of neutron scattering to the presence of hydrogen. As atoms far from the attachment point have a greater range of motion than those nearer the tether, the radius of the sphere limiting the motion of individual hydrogen atoms was allowed to increase based on the atom's distance from the tether point Both smaller pore diameters and higher DPP grafting density resulted in larger amplitude motion while the diffusion coefficient was greatest in the largest pores at highest DPP density. These observations support a model where the DPP molecules prefer an orientation allowing close proximity to the MCM-41 pore surface and are forced into the pore interior by either the steric effect of small pore diameter or by increased competition for surface area at high molecule surface coverage

    Characterization of Biochars Produced from Cornstovers for Soil Amendment

    No full text
    Through cation exchange capacity assay, nitrogen adsorption−desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 °C and gasification at 700 °C. Our experimental results showed that the cation exchange capacity (CEC) of the fast-pyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.Reprinted with permission from Environ. Sci. Technol., 2010, 44 (20), pp 7970–7974. Copyright 2010 American Chemical Society</p
    corecore