81 research outputs found

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes

    Comprehensive Dissection of PDGF-PDGFR Signaling Pathways in PDGFR Genetically Defined Cells

    Get PDF
    Despite the growing understanding of PDGF signaling, studies of PDGF function have encountered two major obstacles: the functional redundancy of PDGFRα and PDGFRÎČ in vitro and their distinct roles in vivo. Here we used wild-type mouse embryonic fibroblasts (MEF), MEF null for either PDGFRα, ÎČ, or both to dissect PDGF-PDGFR signaling pathways. These four PDGFR genetically defined cells provided us a platform to study the relative contributions of the pathways triggered by the two PDGF receptors. They were treated with PDGF-BB and analyzed for differential gene expression, in vitro proliferation and differential response to pharmacological effects. No genes were differentially expressed in the double null cells, suggesting minimal receptor-independent signaling. Protean differentiation and proliferation pathways are commonly regulated by PDGFRα, PDGFRÎČ and PDGFRα/ÎČ while each receptor is also responsible for regulating unique signaling pathways. Furthermore, some signaling is solely modulated through heterodimeric PDGFRα/ÎČ

    The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro

    Get PDF
    Introduction: Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. Methods: Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. Results: Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. Conclusions: This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism

    Cardiovascular and metabolic influences of fetal smoke exposure

    Get PDF
    Many epidemiological studies showed associations of low birth weight with cardiovascular disease, type 2 diabetes and obesity. The associations seem to be consistent and stronger among subjects with a postnatal catch up growth. It has been suggested that developmental changes in response to adverse fetal exposures might lead to changes in the fetal anatomy and physiology. These adaptations may be beneficial for short term, but may lead to common diseases in adulthood. Maternal smoking during pregnancy is one of the most important adverse fetal exposures in Western countries, and is known to be associated with a 150–200 g lower birth weight. An accumulating body of evidence suggests that maternal smoking during pregnancy might be involved in pathways leading to both low birth weight and common diseases, including cardiovascular disease, type 2 diabetes and obesity, in adulthood. In this review, we discuss epidemiological studies focused on the associations of maternal smoking with fetal growth and development and cardiovascular and metabolic disease in later life. We also discuss potential biological mechanisms, and challenges for future epidemiological studies

    Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    Get PDF
    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Breath analysis in detecting epilepsy

    Get PDF
    The aim of this proof of concept study is to investigate if an electronic nose (eNose) is able to make a distinction between breath profiles of diagnosed epilepsy patients and epilepsy-free control subjects. An eNose is a non-invasive device, with a working mechanism that is based on the presence of volatile organic compounds (VOCs) in exhaled breath. These VOCs interact with the sensors of the eNose, and the eNose has to be trained to distinguish between breath patterns from patients with a specific disease and control subjects without that disease. During the measurement participants were asked to breathe through the eNose for five minutes via a disposable mouthpiece. Seventy-four epilepsy patients and 110 control subjects were measured to train the eNose and create a classification model. To assess the effects of anti-epileptic drugs (AEDs) usage on the classification, additional test groups were measured: seven patients who (temporarily) did not use AEDs and 11 patients without epilepsy who used AEDs. The results show that an eNose is able to make a distinction between epilepsy and control subjects with a sensitivity of 76%, a specificity of 67%, and an accuracy of 71%. The results of the two additional groups of subjects show that the created model classifies one out of seven epilepsy patients without AEDs and six out of 13 patients without epilepsy but with AEDs correctly. In this proof of concept study, the AeonoseTM is able to differentiate between epilepsy patients and control subjects. However, the number of false positives and false negatives is still high, which suggests that this first model is still mainly based on the usage of various AEDs
    • 

    corecore