17 research outputs found

    Induction of lymphokine-activated killer activity in rat splenocyte cultures: The importance of 2-mercaptoethanol and indomethacin

    Get PDF
    The role of 2-mercaptoethanol and indomethacin in the induction of lymphokine-activated killer (LAK) activity by interleukin-2 (IL-2) in rat splenocyte cultures was investigated. Spleens from 4-month-old male rats of five different strains were tested. Splenocytes were cultured for 3-5 days in the presence of IL-2 (1000 U/ml) and LAK activity was assessed by 4-h51Cr release assays with P815 and YAC-1 cells as targets. LAK activity could be induced by IL-2 in splenocytes from all rat strains, but only when 2-mercaptoethanol was present in the culture medium. Optimal LAK activity was induced when the 2-mercaptoethanol concentration in splenocyte cultures was at least 5 μM. Different rat strains showed differences in levels of in vitro induction of LAK activity. In the presence of 2-mercaptoethanol the level of LAK activity induced by IL-2 was high in BN and Lewis rats, intermediate in Wistar and Wag rats, and low in DZB rats. In the absence of 2-mercaptoethanol no or minimal LAK activity was induced. Furthermore we observed that addition of 50 μm indomethacin to the culture medium in the presence of 2-mercaptoethanol augmented the induction of LAK activity to some extent. In the absence of 2-mercaptoethanol, addition of indomethacin resulted only in low levels or no induction of LAK activity. We conclude that for optimal induction of LAK activity by IL-2 in rat splenocyte cultures 2-mercaptoethanol is essential, while indomethacin can only marginally further improve this induction

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Arbeitslosigkeit, Alkoholkonsum und Alkoholabhängigkeit: nationale und internationale Forschungsergebnisse

    No full text
    corecore