4 research outputs found

    Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract

    Get PDF
    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their systemic effects through impairing hepatic transport of endogenous compound or drug substrates of these transporters

    Prediction and validation of enzyme and transporter off-targets for metformin

    No full text
    Metformin, an established first-line treatment for patients with type 2 diabetes, has been associated with gastrointestinal (GI) adverse effects that limit its use. Histamine and serotonin have potent effects on the GI tract. The effects of metformin on histamine and serotonin uptake were evaluated in cell lines overexpressing several amine transporters (OCT1, OCT3 and SERT). Metformin inhibited histamine and serotonin uptake by OCT1, OCT3 and SERT in a dose-dependent manner, with OCT1-mediated amine uptake being most potently inhibited (IC(50) = 1.5 mM). A chemoinformatics-based method known as Similarity Ensemble Approach predicted diamine oxidase (DAO) as an additional intestinal target of metformin, with an E-value of 7.4 × 10(−5). Inhibition of DAO was experimentally validated using a spectrophotometric assay with putrescine as the substrate. The K(i) of metformin for DAO was measured to be 8.6 ± 3.1 mM. In this study, we found that metformin inhibited intestinal amine transporters and DAO at concentrations that may be achieved in the intestine after therapeutic doses. Further studies are warranted to determine the relevance of these interactions to the adverse effects of metformin on the gastrointestinal tract
    corecore