3,137 research outputs found

    Manufacturing cement-based materials and building products via extrusion: From laboratory to factory

    Get PDF
    Manufacturing is critical to the economies of the UK and many other countries in the rest of the world. However, manufacturing of cement-based materials and building products predominantly remains based on old batch processing such as casting and pressing technologies and this may limit the applications and performance of the materials and products formed. In this paper, research is reported on transforming manufacturing of precast cement-based materials and building products from in batches to continuous processes via extrusion. Techniques used for producing plastic products are transferred into manufacturing cement-based building products like flat and corrugated sheet tiles, down pipes, door/window frames, door panels, solid wall/facade panels, honeycomb wall/facade panels etc. at laboratory and factory scales. In combination with sustainable cementitious materials with low carbon and low energy as matrix, this enables sustainable building products with key characteristics required by the 21st century can be manufactured via extrusion. The cement-based building products extrusion technique has been successfully transferred to industry. For instance, fibre reinforced cement-based partition wall panels, with a honeycomb cross section as large as 600 mm wide and 90 mm high, have been produced by a continuous extrusion process in a precast concrete products factory in Hangzhou, China.European Commission Seventh Framework Programme, (grant agreement no. 262954) and from the Hong Kong Research Grants Council through grants 6091/00E, 6226/01E, 6273/03E and 6167/06

    Melatonin Alters Age-Related Changes in Transcription Factors and Kinase Activation

    Get PDF
    Male mice were fed 40 ppm melatonin for 2 months prior to sacrifice at age 26 months, and compared with both 26 and 4 month-old untreated controls. The nuclear translocation of NF-κB increased with age in both brain and spleen and this was reversed by melatonin only in brain. Another transcription factor, AP-1 was increased with age in the spleen and not in brain and this could be blocked by melatonin treatment. The fraction of the active relative to the inactive form of several enabling kinases was compared. The proportion of activated ERK was elevated with age in brain and spleen but this change was unresponsive to melatonin. A similar age-related increase in glial fibrillary acidic protein (GFAP) was also refractory to melatonin treatment. The cerebral melatonin M1 receptor decreased with age in brain but increased in spleen. The potentially beneficial nature of melatonin for the preservation of brain function with aging was suggested by the finding that an age-related decline in cortical synaptophysin levels was prevented by dietary melatonin

    A complete approximation theory for weighted transition systems

    Get PDF
    We propose a way of reasoning about minimal and maximal values of the weights of transitions in a weighted transition system (WTS). This perspective induces a notion of bisimulation that is coarser than the classic bisimulation: it relates states that exhibit transitions to bisimulation classes with the weights within the same boundaries. We propose a customized modal logic that expresses these numeric boundaries for transition weights by means of particular modalities. We prove that our logic is invariant under the proposed notion of bisimulation. We show that the logic enjoys the finite model property which allows us to prove the decidability of satisfiability and provide an algorithm for satisfiability checking. Last but not least, we identify a complete axiomatization for this logic, thus solving a long-standing open problem in this field. All our results are proven for a class of WTSs without the image-finiteness restriction, a fact that makes this development general and robust

    Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene

    Full text link
    We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2)XU(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.Comment: 35 page

    Climate changes reconstructed from a glacial lake in High Central Asiaover the past two millennia

    Get PDF
    Climatic changes in Arid Central Asia (ACA) over the past two millennia have been widely concerned. However, less attention has been paid to those in the High Central Asia (HCA), where the Asian water tower nurtures the numerous oases by glacier and/or snow melt. Here, we present a new reconstruction of the temperature and precipitation change over the past two millennia based on grain size of a well-dated glacial lake sediment core in the central of southern Tianshan Mountains. The results show that the glacial lake catchment has experienced cold-wet climate conditions during the Dark Age Cold Period (&sim;300&ndash;600 AD; DACP) and the Little Ice Age (&sim;1300&ndash;1870 AD; LIA), whereas warm-dry conditions during the Medieval Warm Period (&sim;700&ndash;1270 AD; MWP). Integration of our results with those of previously published lake sediment records, stalagmite &delta;18O records, ice core net accumulation rates, tree-ring based temperature reconstructions, and mountain glacier activities suggest that there has a broadly similar hydroclimatic pattern over the HCA areas on centennial time scale during the past two millennia. Comparison between hydroclimatic pattern of the HCA and that of the ACA areas suggests a prevailing &#39;warm-dry and cold-wet&#39; hydroclimatic pattern over the whole westerlies-dominated central Asia areas during the past two millennia. We argue that the position and intensity of the westerlies, which are closely related to the phase of the North Atlantic Oscillation (NAO), and the strength of the Siberian High pressure (SH), could have jointly modulated the late Holocene central Asia hydroclimatic changes.<br /

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth

    Genomic Organization, Tissue Distribution and Functional Characterization of the Rat Pate Gene Cluster

    Get PDF
    The cysteine rich prostate and testis expressed (Pate) proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20–60 day old), expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions

    Genome-wide signatures of convergent evolution in echolocating mammals

    Get PDF
    Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised
    corecore